
1. Introduction
Riverine flooding can be triggered by a variety of distinct hydrometeorological drivers. In the eastern U.S., 
most floods are due to extreme tropical cyclone rainfall or springtime extratropical systems (Smith et al., 2011; 
Villarini & Smith, 2010). Looking further west, extratropical systems combined with summertime mesoscale 
convective systems make up the flood climatology in the midwestern U.S. (Villarini et al., 2011), while floods in 
the mountainous western United States can be caused by extreme rainfall (often from atmospheric rivers [ARs]; 
e.g., Barth et al., 2017), snowmelt, or their combination (Berghuijs et al., 2016; Davenport et al., 2020). Such 
“mixtures” of flood types associated with different physical drivers are also well-documented in Europe (Berghu-
ijs et al., 2019; Blöschl et al., 2017, 2019) and likely exist in most terrestrial regions around the globe. Watersheds 
with these mixtures generally do not experience each type with equal frequency or severity (Smith et al., 2018).

Flood mixtures have two important implications. The first is related to estimation of extreme streamflow quan-
tiles such as the 100-year average recurrence interval (ARI; corresponding to a 1% annual exceedance probability 
[AEP]). These and other quantiles from extreme streamflow distributions—derived via methods broadly referred 
to as flood frequency analysis (FFA)—are central to infrastructure design, dam safety analysis, and floodplain 
mapping (e.g., NRC, 1988, 1994; USBR, 2006, 2011). For mathematical convenience, FFA practices typically 
treat a sample of streamflow observations at a given site as independent and identically distributed (iid; e.g., 
Sivapalan & Samuel, 2009) regardless of whether the sample stems from one or multiple causes. The difficulty of 
mixed sample FFA was recognized decades ago in FFA guidelines (“Bulletin 17B”; ICWD, 1982), and a variety 
of “mixture distribution FFA” techniques have since appeared (e.g., Gotvald et al., 2012; Murphy, 2001; Parrett 
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et al., 2011; Waylen & Woo, 1982). To the best of our knowledge, however, these “remedies” have not achieved 
widespread use (England Jr. et al., 2018; Kjeldsen et al., 2008). It thus appears that more emphasis on mixtures 
is needed in flood research and practice.

The second implication of flood mixtures is related to climatic nonstationarity. The existence of mixtures suggests 
that attempts to identify historical trends or to estimate flood quantiles under changing conditions are unlikely 
to succeed if they cannot account for changes in flood “subsamples” associated with different physical drivers. 
Failure to do so may partially explain the lack of observational evidence for a climate-related increase in flooding 
(Sharma et al., 2018). While nonstationarity is not an explicit focus of this study, results presented below suggest 
that the prevalence of mixtures in the study region will have important implications for FFA in a changing climate.

While “methodological literature” on mixture distribution FFA abounds (e.g., Gotvald et al., 2012; Murphy, 2001; 
Waylen & Woo, 1982), few examples take a regional look at the prevalence of mixed flood populations and their 
FFA implications. This study aims to show both the regional prevalence of mixtures and what this means for 
upper tail flood quantiles. These aims share some similarity with Smith et al. (2011) and Barth et al. (2017). 
Compared with Smith et al. (2011), we bring a different geographic focus and explicitly investigate the effects 
of mix types on flood quantiles. While our study region largely overlaps with that of Barth et al. (2017)—who 
examined the role of ARs in flood quantiles—we consider a wider range of flood drivers. Although the objective 
of this study is not to provide practical methods for mixture distribution FFA, it adds to emerging research into 
process-based understanding and prediction of flood frequency. We also demonstrate the value of new datasets, 
including from large-scale land surface models (LSMs), to support such research.

2. Background—Floods in the US Mountain West
Winter stratiform precipitation—often associated with ARs (e.g., Gershunov et al., 2017; Ralph et al., 2006)—
brings moisture to the U.S. west coast, where it often experiences orographic enhancement and snowpack accu-
mulation (James & Houze, 2005). When rain falls on existing snowpack, it accelerates melt and can produce 
rain-on-snow (ROS) flooding (e.g., Marks et al., 1998). In the late spring and early summer, snowmelt and ROS 
are the main flood drivers for watersheds at high elevations (e.g., Northern Cascades and Sierra Nevada) and 
high latitudes (e.g., Montana; Berghuijs et al., 2016; McCabe et al., 2007). In the late summer, rainfall-driven 
floods occur across the semiarid southwest, often associated with the North American monsoon (e.g., Higgins 
et  al.,  1997; Li et  al.,  2003; Vivoni et  al.,  2006). Large-scale atmospheric circulation anomalies, oftentimes 
outside of the snowmelt season, account for some of the largest floods in the region (Hirschboeck, 1987; Maddox 
et al., 1979, 1980). For example, 13 out of the 21 very large (on a unit watershed area basis) floods in the conter-
minous US (CONUS) analyzed in Hirschboeck (1987) occurred in the west and were attributed to such phenom-
ena. These include the well-known west coast “Christmas Flood” in 1964 (e.g., Fredriksen, 1965) and the 1976 
Big Thompson flood in Colorado (e.g., Costa, 1978).

Though precipitation extremes have increased only modestly in the western US since 1950s (e.g., Karl et al., 2009; 
Wright et al., 2019), this trend is projected to continue with climate warming (e.g., Diffenbaugh et al., 2005; 
Dominguez et al., 2012; O’Gorman, 2015). Past warming has shifted the snowmelt season earlier, accompanied 
by declining melt rate (Fritze et al., 2011; Musselman et al., 2017). ROS events have become more frequent at 
high elevation due to higher freezing levels, but less frequent at low elevation as snowpack declines (Kampf & 
Lefsky, 2016; McCabe et al., 2007). Thus, the relative balance of different flood drivers has and will continue to 
shift, posing challenges to FFA and potentially causing important changes in flood distributions.

3. Data and Methods
3.1. Streamflow and Other Observational/Model Data

This study uses an updated version of the data set from Davenport et al. (2020), who identified rainfall-, snow-
melt-, and ROS-driven streamflow observations in the western US. The longest streamflow records in the data 
set range from 1980 to 2020. Davenport et al. (2020) identified US Geological Survey daily streamflow obser-
vations that exceed the long-term median value and calculated preceding 8-day basin-averaged precipitation 
(NLDAS-2; Mitchell, 2004) and simulated snow water equivalent from the North American Land Data Assim-
ilation System Variable Infiltration Capacity (NLDAS-VIC)  land surface model (LSM) (Xia et al., 2012). To 
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ensure independence, Davenport et al. (2020) required at least 7 days between streamflow events, which then 
were classified as: (a) rainfall-driven (total rainfall > 10 mm and snowmelt < 5 mm), (b) snowmelt-driven (total 
rainfall < 5 mm and snowmelt > 10 mm) and (c) ROS when both rainfall and snowmelt exceed 5 mm. While the 
final Davenport et al. (2020) data set only includes 410 watersheds that exhibit multiple flood types, this includes 
virtually all higher-elevation watersheds (>500 m above sea level [masl]). Watersheds with a only a single type—
not analyzed in Davenport et al. (2020) nor here—were rainfall-dominated and 65 of 69 are on the Pacific coast 
or at low elevation in Arizona. Thus, the overwhelming majority of watersheds outside of those two subregions 
exhibited multiple flood types according to the that study's criteria.

For each watershed, we selected the largest m streamflow events irrespective of flood type, as well as the largest n 
streamflow events of each type, where m (n) is the largest value between 25 (20) and the number of unique water 
years. The m events are henceforth referred to as single-sample floods while the n events are referred to by type. 
If the number of a particular type is less than 20, it is neglected because its distribution cannot be modeled well. 
In general, the magnitudes of flood types rejected due to limited sample sizes were much smaller than retained 
types at the same site (Figure S1 in Supporting Information S1). Nonetheless, rejection of flood types on the basis 
of sample size is a noteworthy limitation of our work and is discussed further in Section 5. Twenty eight sites with 
m < 25 were discarded. To further ensure that flood events are independent, we removed 74 sites that exhibited 
significant Pearson correlation (p-value < 0.05) between successive peaks. This left 308 watersheds with aver-
age sample sizes of 37 for the single-sample group, and 37, 35, and 36 for rainfall-, snowmelt- and ROS-driven 
groups, respectively. We also applied nonparametric bootstrapping to evaluate sample size effects (e.g., from 25 
to 41) and obtained very similar shape parameters despite uncertainties in the estimated 100-year floods (Figures 
S2–S5 in Supporting Information S1). For the purposes of this study, that is, to understand the extent of mixture 
effects (e.g., shape parameters), these sample sizes appear to be sufficient. We do not necessarily recommend 
these results for usage in operational FFA.

It should be noted that most prior studies that consider mixture flood distributions (Barth et al., 2017; Gotvald 
et al., 2012; Smith et al., 2011; Villarini et al., 2011) separated annual instantaneous peak flows into flood types. 
This can seriously limit the number of observations for each subtype. Our approach based on continuous daily 
streamflow timeseries remedies this somewhat. To bridge this gap between daily and instantaneous peak flows, 
ratios between the two (where available) were calculated. These ratios decrease with watershed size and are 
(larger) smaller values for (rainfall) snowmelt floods (Figure S6 in Supporting Information S1). This latter fact 
implies that different flood types diverge more—and thus will exhibit stronger mixing effects—at the instantane-
ous scale than at the daily scale.

3.2. Flood Envelope Curves

Envelope curves depict the upper bound of regional streamflow observations (Costa, 1987; Enzel et al., 1993). 
We examined how the largest floods of each flood type vary with watershed scale by estimating envelope curves 
from the largest observations via (Fuller, 1914)

𝑄𝑄𝑖𝑖 = 𝛼𝛼𝑖𝑖𝐴𝐴
𝜃𝜃𝑖𝑖 (1)

where Qi denotes the largest daily streamflow with respect to drainage area A and flood type i; αi and θi are scaling 
intercept and power law coefficients, respectively.

3.3. Extreme Value and Mixture Modeling and Boundedness

We fitted Generalized Pareto distributions (GPD; e.g., Coles, 2001) to observations of different flood types, as 
well as the single-sample floods using L-Moments (Hosking & Wallis, 1997). The GPD's cumulative distribution 
function (CDF) is:

�� (��;��, ��, ��) = 1 −
(

1 +
��(�� − ��)

��

)− 1
��

for �� ≠ 0 (2)

where xi denotes streamflow of flood type i, and μi, σi, and ξi are the threshold, scale, and shape parameters, 
respectively. μi and σi indicate the central tendency and variability, respectively, while ξi is indicative of skewness 
and the “thickness” of the GPD tail. Notably, in GPD and related distributions (e.g., the generalized extreme value 
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distribution), ξi  >  0 indicates that the upper tail is heavy and unbounded, 
meaning that there is nonzero probability density as xi → ∞. ξi  <  0, in 
contrast, implies an upper bound to the distribution, while ξi = 0 indicates 
a thin tail. Estimated shape parameters have been widely used in the study 
of extreme events such as rainfall, floods, and water vapor transport (e.g., 
Villarini & Smith,  2010; Su & Smith,  2021). In this study, record length 
thresholds described in Section 3.1 provided μi; this approach has been used 
in prior research (e.g., Papalexiou & Montanari,  2019) and practice (e.g., 
Bonnin et al., 2004; Perica et al., 2018).

Having ensured independence of flood events, we also derived “mixture 
distributions” by taking the product of CDFs of different flood types for 
watersheds exhibiting multiple flood types (Nadarajah,  2008; Waylen & 
Woo, 1982):

𝐹𝐹mixture(𝑥𝑥) = 𝐹𝐹rainfall(𝑥𝑥) ∗ 𝐹𝐹snowmelt(𝑥𝑥) ∗ 𝐹𝐹ROS(𝑥𝑥) (3)

If only rainfall and snowmelt peaks are considered for a watershed, for exam-
ple, the cumulative distribution function (CDF) of its mixture distribution 
is the product of Fsnowmelt and Frainfall. We also use “upper tail flood type” to 
describe the type that generates the highest 100- to 500-year ARIs. To partly 

account for the distribution uncertainty, we have also repeated analyses using the log-Pearson type III (LP3) 
distribution (Equations S1–S3 in Supporting Information S1; e.g., Asquith et al., 2017).

4. Results
4.1. Envelope Curves of Different Flood Types

The largest rainfall- and ROS-driven flood peaks are similar in magnitude and are substantially larger than snow-
melt floods (Figure 1). At larger scales (>2,000 km 2), however, there are few rainfall or ROS flood events that 
exceed the snowmelt envelope curve. This is likely due to rainfall partial coverage limits the magnitude of rain-
fall-driven and ROS-driven floods in large watersheds.

The pronounced differences between flood types evident in Figure 1 indicate that extreme floods are almost 
always tied to rainfall. This result is in line with the fact that snowmelt rates are constrained by the available 
energy and tend to be smaller than extreme rainfall rates (e.g., Jarrett, 1989; Jarrett & Costa, 1988; Kampf & 
Lefsky, 2016). For example, the largest NLDAS-2 single grid cell daily rainfall depth within the study region was 
415 mm, far exceeding the largest NLDAS-VIC daily snowmelt of 285 mm. Nonetheless, these envelope curves 
conceal important aspects of flood behavior linked to geography and elevation.

4.2. Mixture Distributions and Their Prevalence

To illustrate the concept of mixture distributions and how we calculated them, we show examples from Galla-
tin River near Gallatin Gateway, MT and Chiwawa River near Plain, WA (Figure 2). Though both watersheds 
exhibit three flood types (Figures 2a and 2b), the associated GPDs are quite distinct (Figures 2c and 2d). In both 
watersheds, mixture distributions resemble the single-sample GPDs for ARIs smaller than 10–20 years, but much 
higher estimates for the upper tail (ARI ≥ 100 years; Figures 2c and 2d). Similarly, estimated ARIs show substan-
tial differences depending on whether mixture distributions or single-sample GPDs are used. For instance, the 
average recurrence interval (ARI) of a 300 m 3 s −1 event in Gallatin River is estimated to be ∼70 years using the 
mixture distribution, but over 500 years using the single sample GPD.

Snowmelts dominate the tail of the mixture distribution for the higher elevation Gallatin River (2,400 masl; 
Figure 2c), while rainfall-driven peaks dominate the tail for Chiwawa River (1,400 masl; Figure 2d). Crucially, 
single-sample GPDs for these sites fail to capture the upper tail flood distribution behavior.

Among the 308 watersheds in this study, 27 (9%) exhibit a single flood type (i.e., rainfall-driven), while 82 (27%) 
and 199 (64%) exhibit mixtures of two and three flood types, respectively. GPD shape parameters for the rainfall 

Figure 1. The largest rainfall-, snowmelt-, and ROS-driven flood peaks for 
each watershed and their corresponding envelope curves. Filled circles denote 
peaks used for envelope curve fitting.
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peaks are generally positive while snowmelt values are negative (Figure 2e). Log-Pearson type III (LP3) shape 
parameters show similar patterns (Figure S7 in Supporting Information S1). These findings are consistent with 
the envelope curves in Figure 1: the largest rainfall-driven floods are much more severe than the snowmelt-driven 
events except at the largest watershed scales.

Figure 2. The selected peaks of three different flood groups for (a) Gallatin River near Gallatin Gateway, MT (USGS:06043500) and (b) Chiwawa River near Plain, 
WA (USGS:12456500). Genearlized Pareto Distributions (GPDs) for different groups, along with mixture distributions for (c) Gallatin and (d) Chiwawa. Inset maps in 
(c and d) roughly show watershed locations. (e) Violin plots of all watersheds' single sample and distinct type GPD shape parameters.
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4.3. Importance of Mixture Distributions in Flood Quantiles

We derived both single-sample GPD/LP3 and mixture distributions for all but 19 sites—denoted with unfilled 
circles in Figure 3—which had sufficient records only to derive rainfall-driven distributions. Consistent with 
examples in the previous subsection, quantile estimates differ markedly at high ARIs. For 10-year floods, for 
example, differences between the two distributions are negligible (generally <±5%; Figure 3a) while for 200-year 
floods, the mixture distribution-based estimates are 50%–150% higher than the single-sample GPD-based values 
for most watersheds (Figure 3d). LP3-based results show even larger percent differences, indicating stronger 
“mixing effects” (Figures 3e–3h).

The upper tail flood type shows geographic patterns as rainfall- and snowmelt floods dominate in watersheds 
along the Pacific Coast and the Rocky Mountains, respectively (Figure 3). ROS upper tail flood types can be 
found throughout the study region. Irrespective of upper tail flood type, the mixture distributions yielded >+5% 
higher estimates than single sample method for 100- and 200-year floods for a majority (57% using GPD and 74% 
using LP3) of watersheds. In these watersheds, single-sample shape parameters are smaller than the values from 
at least one individual flood type (Figure S8a in Supporting Information S1).

Forty-six (seventeen) watersheds show negative percent differences (<−5%) even for 200-year floods between 
using two methods, meaning the single-sample GPD (LP3) yields higher estimates (dark blue symbols in Figure 3). 
In these watersheds, shape parameters for single-sample distributions are generally larger than the corresponding 
values from any individual flood type (Figure S8b in Supporting Information S1). This physically-unreasonable 
result is due to the statistical artifact known as “skew separation” which results in increased skewness when 
mixing statistically different samples (Dawdy & Gupta, 1995; see Section 5 for a brief explanation).

Figure 3. Percent differences for (a and e) 10-year, (b and f) 50-year, (c and g) 100-year and (d and h) 200-year floods between single-sample and mixture distribution 
methods. (a–d) and (e–h) are based on Generalized Pareto distributions (GPD) and log-Pearson type III (LP3) distributions, respectively. Unfilled circles represent the 
watersheds that only had sufficient data to model a single flood type.
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Eighty five (sixty two) watersheds showed comparable estimates (<5% difference) between the single-sample 
GPD/LP3 and mixture distributions (gray symbols in Figures 3d and 3h). This can occur in two ways: (a) GPD 
(LP3) of the three (or two) individual flood types can be similar, or (b) floods of one type are always larger than 
the those of the other types. An example of the former is the Thompson River near Thompson Falls, MT (USGS: 
12389500); an example of the later is the Sauk River near Darrington, WA (USGS: 12186000), where rainfall 
floods are always higher than the snowmelt and ROS events (Figure S9 in Supporting Information S1).

4.4. Linkage of Watershed Characteristics to Flood Quantile Differences

We investigated differences in 200-year floods between single-sample and mixture distributions from Figure 3d 
with respect to elevation, basin-averaged annual precipitation, and winter mean temperature. Annual precipita-
tion and winter mean temperature decrease with elevation across the western US (Figure 4). Large differences 
in 200-year floods are prevalent across climate and elevation regimes, except for relatively warm watersheds 
(winter mean temperature >5°C) where snow rarely accumulates and where rainfall dominates both single-sam-
ple and mixture distributions. For higher and colder watersheds, snowmelt events yield higher rare quantiles (e.g., 
Figure 2c); for lower and warmer watersheds, rainfall and ROS events dominate the tail (e.g., Figures 2d and 4). 
Rainfall-driven floods can also dominate the tail distribution even for watersheds at high elevation (>3,000 m), 
consistent with previous research showing that rainfall-driven floods can occur at such elevations (especially in 
the intermittent snow zone; e.g., Kampf & Lefsky, 2016; Mahoney et al., 2015).

5. Discussion and Conclusions
This study examines the behavior of mixture flood populations and its impacts on upper tail distributions in the 
western US. Here, we discuss limitations of our work as well as implications for FFA practice. We reiterate that 
this study does not propose a method that can replace current operational FFA techniques, for example, Bulletin 
17C (England et al., 2018), but rather to highlight the potential need for such a replacement.

Envelope curves show that the largest flood events in the region are almost entirely associated with rainfall 
(including ROS) associated with anomalous atmospheric circulations (Gochis et al., 2015; Hirschboeck, 1987; 
Maddox et al., 1980); the largest snowmelt events are roughly four times smaller. 91% of the study watersheds 
exhibited relatively large samples (n > 20 for the 1980–2020 period) of least two flood types. Distribution tail 
behavior further highlights key differences among flood types. Positive GPD/LP3 shape parameters, which indi-
cate the potential for rare but very large floods, are much more common for rainfall and ROS samples than for 
snowmelt samples. The latter type has, on average, negative shape parameters, indicating an upper bound in flood 
magnitude from snowmelt tied to limited daytime net radiation.

Figure 4. The relationship between the percent differences in 200-year floods and their explanatory variables, including 
winter mean temperature, annual precipitation, and watershed elevations.

:
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A total of 223 (246) sites showed undesirable over- or under-estimation in GPD (LP3)-based flood quantiles 
resulting from neglect of mixture effects. Our results indicate that the influence of mixtures on flood frequency is 
most prevalent in the upper tail, that is, above the 100-year average recurrence interval (ARI). Lower return peri-
ods are much less affected. In more than half of sites (57% using GPD and 74% using LP3), mixture distributions 
resulted in 200-year floods that are at least 5% larger—and much larger, in many cases—than the results of single 
sample distributions (Figures 3d and 3h). In a warming future, watersheds at lower elevations will experience less 
snowpack and thus reduced frequency of ROS events (e.g., Huang et al., 2018; Musselman et al., 2018), which 
will potentially shift ROS-dominated tails to rainfall-dominated. Meanwhile, high-elevation watersheds will see 
more precipitation falling as rain rather than snow (e.g., Freudiger et al., 2014; Fritze et al., 2011), which may 
change snowmelt-dominated tails to ROS- or rainfall-dominated. These projected changes imply further diver-
gence between snowmelt- and rainfall-driven flood distributions.

A further 46 (17) watersheds show 200-year floods greater than 5% lower using mixture distributions than using 
the single sample GPD (LP3). These are attributable to “skew separation” (Matalas et al., 1975)—the artificial 
increase in skewness that results when two or more samples from different populations are mixed. An example of 
this can be seen in Figure S10 in Supporting Information S1. Dawdy and Gupta (1995) showed that skew separa-
tion can result from heterogeneity in flood generating mechanisms.

Taken together, the prevalence of “mixture distributions” and disparities in streamflow magnitudes associated 
with different types of floods seriously undercut the independent and identically distributed (iid) assumption 
that underpins much of FFA practice. Nonetheless, we take time here to highlight six limitations of our study: 
(a) we used a relatively small sample sizes (ranging from 20 to 41). While such samples are admittedly small to 
accurately capture tail behavior, sensitivity analysis showed relatively limited and predictable quantile estimation 
behavior as a function of sample size (Figures S2–S5 in Supporting Information S1). Nonetheless, sample size 
issues should probably preclude usage of our results for decision-making purposes. (b) Rainfall and ROS floods 
in this study could have been further divided into subtypes according to their rainfall generating mechanisms 
(e.g., ARs vs. non-ARs; Barth et  al.,  2017) though at the expense of even smaller sample sizes. (c) A flood 
type was only included in mixture analysis if sufficient samples were available. This could in theory lead to the 
exclusion of anomalously large events for certain sites, if that event's type is infrequent. Due to the inclusion of 
the rainfall type at all sites and the bounded behavior of snowmelt floods, ROS is the only type subject to this 
limitation in our study region; 27 sites (9%) excluded the ROS type. (d) We neglected the role of “low floods” in 
arid watersheds and can color FFA results (e.g., Cohn et al., 2013)—though our usage of peaks-over-threshold 
observations rather than annual maxima may mitigate this issue to some extent. (e) Our usage of daily streamflow 
records differs from most FFA applications, which use instantaneous records. As argued in Section 3.1 (supported 
by Figure S6 in Supporting Information S1), mixture effects are likely stronger at the instantaneous timescale, 
meaning our findings likely understate the importance of mixing for such FFA applications. (f) We did not assess 
the impacts of temporal trends in flood types on mixture results. The existence of trends would complicate anal-
yses further, but cannot be ruled out given observed water cycle changes in the region.

This study, along with Smith et al. (2011) and Barth et al. (2017), highlights the existence of mixed flood samples 
stemming from a wide variety of hydrometeorological drivers (e.g., snowmelt, ROS, and rainfall from ARs, trop-
ical cyclones, and other storm systems). Our results imply a widespread violation of the conventional FFA inde-
pendent and identically distributed (iid) assumption in our study region; further work is needed to see whether 
such independent and identically distributed (iid violations are common elsewhere. In addition, projected climate 
warming in the western US raises questions as to whether past flood observations and FFA results and methods 
will remain valid in the future. We believe that more explicitly process-based approaches have much to offer (see 
Sivapalan & Samuel, 2009; Wright et al., 2020 for expanded arguments). Here, we use large-scale land surface 
models (LSMs) simulations to help separate flood samples into distinct groups to study mixture distributions. 
Land surface models (LSMs) and land-atmosphere reanalyzes could be used to extend this or other analyses into 
a longer-term and geographically broader investigation of mixture flood distributions. Even more physically 
rooted FFA approaches such as Yu et al. (2019, 2020, 2021), which resolve probable combinations of different 
hydrometeorological drivers within physically-based numerical model simulations, can also provide insights and 
test hypotheses about the connections between mixed flood regimes, flood frequency, and how these are changing 
in a warming climate.
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Data Availability Statement
The flood data used in this study are available at: https://doi.org/10.5281/zenodo.5645525.
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