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C L I M AT O L O G Y

Machine learning–based extreme event attribution
Jared T. Trok1*, Elizabeth A. Barnes2, Frances V. Davenport3, Noah S. Diffenbaugh1,4

The observed increase in extreme weather has prompted recent methodological advances in extreme event at-
tribution. We propose a machine learning–based approach that uses convolutional neural networks to create dy-
namically consistent counterfactual versions of historical extreme events under different levels of global mean 
temperature (GMT). We apply this technique to one recent extreme heat event (southcentral North America 2023) 
and several historical events that have been previously analyzed using established attribution methods. We esti-
mate that temperatures during the southcentral North America event were 1.18° to 1.42°C warmer because of 
global warming and that similar events will occur 0.14 to 0.60 times per year at 2.0°C above preindustrial levels of 
GMT. Additionally, we find that the learned relationships between daily temperature and GMT are influenced by 
the seasonality of the forced temperature response and the daily meteorological conditions. Our results broadly 
agree with other attribution techniques, suggesting that machine learning can be used to perform rapid, low-cost 
attribution of extreme events.

INTRODUCTION
Since the 1800s, human emissions of greenhouse gasses have trig-
gered a rapid period of global warming that is unprecedented in 
at least the past 2000 years (1). Many of the most destructive conse-
quences are felt through extreme weather events such as heat 
waves, heavy precipitation, and droughts, which have increased in 
frequency and intensity in many parts of the world (2–5). Some of 
these trends have been formally attributed to anthropogenic climate 
change. For example, a recent assessment by the Intergovernmental 
Panel on Climate Change (IPCC) has concluded that it is extremely 
likely that human activity has contributed to the observed global 
increases in the frequency and intensity of daily temperature ex-
tremes, and more changes are expected in the future (4). However, 
since all extreme events result from the complex interaction of 
dynamic and thermodynamic processes, the precise contribution of 
anthropogenic forcing to any individual event remains difficult to 
quantify (6).

In recent years, there have been many advances in the subfield of 
climate science known as extreme event attribution (3, 7–10), which 
is focused on understanding whether—and, if so, how—individual 
extreme events are influenced by human-induced climate change. 
Event attribution studies attempt to quantify the extent to which cli-
mate change has affected the frequency and/or intensity of individual 
extreme weather events by comparing the characteristics of ex-
tremes between the historical climate and a “counterfactual” climate 
scenario. Most event attribution studies fall under the category of 
“probability-based” (or “risk-based”) assessments. These approach-
es often involve estimating changes in the probability of extremes by 
analyzing trends in the observational record [e.g., (3, 11)], calculat-
ing return intervals of extreme events in large climate model en-
sembles [e.g., (3, 12)], or comparing the characteristics of extreme 
events in multiple climate model simulations initialized with differ-
ent levels of global warming [e.g., (6, 7, 13–15)]. Another line of 

probability-based attribution studies estimates the contribution of 
historical climate change to the magnitude of individual events of a 
given return interval (6). These studies typically use observational 
data [e.g., (16)] and/or climate model simulations [e.g., (17, 18)] to 
estimate the change in event magnitude. Since these probability-
based approaches often analyze existing climate model simulations 
or observational datasets, they are quite computationally efficient. 
These techniques can be used to make rapid attribution assessments 
closely following an extreme event—such as those released by the 
World Weather Attribution initiative [e.g., (16, 19)]—or used to cre-
ate “precomputed” attribution estimates [e.g., (20)].

Other extreme event attribution studies use a “storyline” ap-
proach (21) to compare event magnitude between several dynamically 
consistent realizations of an extreme event across different mean 
climate states. These approaches typically involve simulating multiple 
counterfactual realizations of an extreme event [or an entire histori-
cal period, (22)] using a climate model initialized with and without 
anthropogenic forcings [e.g., (23–25)] or, similarly, using coun-
terfactuals in the historical record by comparing event intensity 
between several nearly identical atmospheric “flow analogs” (26) of an 
extreme event in the observational record (27, 28). By ensuring 
that each counterfactual realization has the same atmospheric cir-
culation patterns, these storyline-based approaches attempt to iso-
late the influence of anthropogenic forcing on thermodynamic 
drivers of a particular event (29). Although there is some evidence 
that anthropogenic forcing may alter the large-scale atmospheric 
circulation leading to extreme events [e.g., (30–33)], the influence of 
anthropogenic forcing on thermodynamic drivers is far more well-
documented and well-understood [e.g., (23, 34)].

Despite these recent advances, current approaches to extreme 
event attribution still have numerous limitations. The main disad-
vantage of probability-based techniques is that they rely on climate 
model simulations that can have large biases in how the atmospheric 
circulation (and other processes that influence extremes) responds 
to anthropogenic forcing (35, 36). Therefore, it is difficult to discern 
whether simulated changes in extreme events are the result of robust 
thermodynamic changes or highly uncertain dynamic changes (29). 
Another shortcoming of using climate model ensembles to make 
probability-based attribution assessments is that these simulations 
do not include the actual meteorological conditions that occurred 
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during the historical extreme events (3). Instead, these attribution 
techniques are based on comparing statistical distributions within a 
large population of simulated weather events at different levels of 
climate forcing. To avoid this issue, alternative attribution approaches 
can be used to analyze trends in observational datasets rather than 
climate model simulations, but these approaches have added uncer-
tainties in their attribution estimates due to the limited length of the 
observational record (3). This results in a trade-off in the choice of 
dataset used for probability-based attribution assessments, whereby 
climate model ensembles have large sample sizes but potentially 
large physical biases, while observational datasets do not have these 
biases but typically have larger uncertainties in the statistical fit to 
the climate data. To manage this trade-off, recent probability-based 
attribution studies have synthesized results from both observational 
and climate model datasets into a single comprehensive attribution 
statement [e.g., (17)].

Storyline approaches for extreme event attribution can over-
come some of these issues by forcing the counterfactual events 
to be dynamically consistent with the observed extreme event. 
However, these storyline techniques provide an incomplete assess-
ment of attribution since they do not account for anthropogenically 
forced changes in the probability of the meteorological conditions 
contributing to an event (21). Unfortunately, generating dynami-
cally consistent counterfactual simulations is also quite compu-
tationally expensive and difficult to automate (19), which can 
make these storyline approaches infeasible for rapid attribution as-
sessments of recent events unless a large amount of computing resourc-
es are available [e.g., (25)]. Storyline techniques are also limited in 
their ability to quantify future changes in event frequency (22), 
which is a vital attribution metric for informing future adaptation 
measures (21).

Given these limitations, there is an opening for additional at-
tribution techniques that can create dynamically consistent coun-
terfactual events to assess changes in both the magnitude and 
frequency of individual extreme events without requiring expensive 
additional climate model simulations. Recently, machine learning 
(and statistical learning) models have been used to detect the large-
scale forced response (i.e., “fingerprint”) of climate change and at-
tribute these changes to anthropogenic forcing even amid large 
internal variability [e.g., (37–41)]. Moreover, although the use of 
deep neural networks has grown rapidly in climate research [e.g., 
(40, 42)], they have not yet been extensively used to perform attribu-
tion analyses for extreme weather events. However, given the ability 
for neural networks to learn complex relationships within large 
climate datasets [e.g., (38)], these machine learning models are a 
promising tool for extreme event attribution that may reveal addi-
tional insights into the historical and future influence of climate 
change on extreme events.

Convolutional neural networks (CNNs) constitute a particular 
type of deep neural network specifically designed to learn relation-
ships between two-dimensional gridded input maps and the desired 
output variable (43). Geoscience applications of CNNs are becom-
ing increasingly commonplace, with applications in weather fore-
casting [e.g., (44, 45)], identification of extreme weather events [e.g., 
(34, 46–48)], detection of changes in extreme event frequency [e.g., 
(34)], statistical downscaling [e.g., (49, 50)], and climate model pa-
rameterization [e.g., (51, 52)]. Recently, explainable artificial intel-
ligence techniques [e.g., layer-wise relevance propagation, which 
can be used to determine which input pixels are most important 

for a given output prediction (53)] have been used to interpret the 
predictions of trained CNNs (34, 47, 54) and gain insights into the 
physical climate processes simulated by neural networks (38, 42, 
55). Likewise, partial dependence analysis [which can be used to 
visualize the average relationship between input and output vari-
ables (56)] is an explainable artificial intelligence technique that has 
recently been applied to CNNs to visualize the complex, nonlinear 
relationships between input and output variables in the geoscience 
context (57, 58).

Building on the work of recent attribution studies, we present a 
framework for using machine learning to evaluate the contribution 
of human-caused climate change to individual extreme weather 
events (Fig. 1). Our storyline-based attribution framework uses 
CNNs and partial dependence analysis to create dynamically consis-
tent counterfactuals for historical extreme events without requiring 
expensive additional climate model simulations. To perform this 
analysis, we first design a CNN that predicts daily maximum 2-m air 
temperature (TMAX) using the following input variables: the calen-
dar day, the annual global mean surface temperature (GMT), and 
daily maps of sea-level pressure (SLP), soil moisture (SM), and geo-
potential height (GPH). Then, we train multiple CNNs to predict 
daily TMAX across a range of past and future climates using climate 
model simulations of the 1850 to 2100 period as training data 
(Fig. 1A). Since there are various factors that can influence the pre-
dictions of trained CNNs, we train multiple different CNNs to ex-
plore the sensitivity of our results to randomness in the CNN 
training process and differences between the climate model simula-
tions used as training data. Next, to understand how a historical ex-
treme event is influenced by anthropogenic climate forcing, we use 
these trained CNNs to create dynamically consistent counterfactual 
versions of the event by using the SLP, SM, and GPH fields from a 
historical reanalysis dataset as inputs to the CNNs and predicting 
TMAX at various different levels of GMT (ranging between 0.0° 
and 4.0°C above the 1850 to 1900 mean GMT) (Fig. 1B). Lastly, by 
comparing these counterfactual TMAX predictions across different 
levels of GMT, we estimate the sensitivity of the frequency and in-
tensity of the event to changes in the GMT anomaly (relative to the 
1850 to 1900 baseline levels of GMT) (Fig.  1C). In the following 
sections, we evaluate this approach for machine learning–based 
extreme event attribution by applying this technique to one recent 
extreme event (southcentral North America 2023) and multiple his-
torical extreme events for which attribution assessments have been 
published using other methods.

RESULTS
Event attribution for the June 2023 heat wave in 
southcentral North America
We train CNNs (Fig. 1) to predict daily TMAX over a region in 
southcentral North America using data from two different general 
circulation models (GCMs)—CanESM5 and UKESM1-0-LL—
from the Coupled Model Intercomparison Project phase 6 (CMIP6) 
database. For each GCM, we construct separate training datasets 
using data from five GCM simulations of the 1850 to 2100 period, 
with three GCM simulations used for CNN training, one GCM 
simulation used for CNN validation, and one GCM simulation 
used for CNN testing (see Materials and Methods). On each of these 
training datasets, we then train three separate CNNs using different 
random seeds to explore the sensitivity of our results to randomness 
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in the CNN training process. We find that the CNNs are able to pre-
dict daily TMAX with an average R2 value of 0.99 and an average 
root-mean-squared error (RMSE) of 0.75°C on the unseen GCM 
test datasets (averaged across six total CNNs from the two GCM 
training datasets) (fig.  S1). We then evaluate the performance of 
these trained CNNs on unseen data from the European Center for 

Medium-Range Weather Forecasting Reanalysis fifth-generation 
historical reanalysis dataset (ERA5) and find that the CNNs trained 
on CanESM5 data achieve an average R2 value of 0.96 and an average 
RMSE value of 1.31°C, while the CNNs trained on UKESM1-0-LL 
data achieve an average R2 value of 0.94 and an average RMSE value 
of 1.62°C (fig. S1).

Fig. 1. Schematic of machine learning–based approach for extreme event attribution. (A) A CNN is trained to predict the daily TMAX over the prediction region (black 
box) using the following inputs: the calendar day, the annual GMT, and two-dimensional calendar-day anomaly maps of SLP, SM, and GPH at 700, 500, and 250 mbar. Three CNNs 
are trained on data from GCM simulations for the 1850 to 2100 period. See Materials and Methods for details of the CNN architecture and training process. (B) The trained CNNs 
are used to predict TMAX for a historical extreme event using the input variables from a historical reanalysis. Then, counterfactual TMAX predictions for this extreme event are 
obtained by letting the GMT input vary between +0.0° and +4.0°C relative to the 1850 to 1900 baseline period (i.e., the GMT anomaly). (C) (Left) Change in the counterfactual CNN 
TMAX prediction as a function of the GMT anomaly calculated using the reanalysis input maps from the historical extreme event. (Right) The number of extreme events [hotter 
than the event from (B)] as a function of the GMT anomaly calculated using the counterfactual CNN predictions from the reanalysis input maps during the June to August 1979 
to 2023 period. Shown are the results for one individual CNN (dark gray line) and the range of results from three CNNs (gray shading) each trained with a different random seed.
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Since the specific meteorological conditions during an event 
are an essential component of the extreme event (29), we carefully 
evaluate whether the daily ERA5 input maps (SLP, GPH, and SM) 
improve the CNN’s TMAX predictions (fig. S2). To isolate the con-
tribution of the daily ERA5 input maps to the overall CNN skill, we 
compare the CNN performance with the original daily input maps 
against a baseline threshold for CNN performance obtained by set-
ting all pixel values in the daily input maps to the long-term mean 
value for each grid cell (i.e., zero), which ensures that there is no 
daily variation in the meteorological conditions. We find a 52.8% 
reduction in the mean RMSE when we include the original meteo-
rological input maps rather than the maps that have been replaced 
with the grid-cell mean (fig. S2). This suggests that, rather than ig-
noring the daily input maps and only using information from the 
GMT and calendar-day input variables to predict TMAX, the CNNs 
use the daily ERA5 meteorological input maps to explain daily-scale 
variations in ERA5 TMAX that are caused by short-term variations 
in weather patterns.

After training and evaluating CNN performance, we use the 
trained CNNs to analyze the June 2023 heat wave over southcentral 
North America (Fig. 2). This event reached its peak intensity on 19 
to 28 June 2023 (fig. S3), during which the 10-day mean TMAX 
(36.13°C) was the hottest 10-day mean TMAX over this region in 
the ERA5 dataset (1979 to 2023). Our CNNs closely reproduce the 
temporal evolution and magnitude of this event, predicting a mean 
TMAX of 36.19°C averaged across all six CNNs (with individual 
CNNs ranging from 35.30° to 37.29°C). Moreover, for all six of the 
CNNs, this event contains the first or second hottest 10-day mean 
TMAX in June to August (JJA) within the entire time series of CNN 
predictions (1979 to 2023) (Fig. 2A). This confirms that our CNNs 
closely reproduce the magnitude and historical ranking of this 
event, conveying confidence that these CNNs can be used to quan-
tify the sensitivity to changes in GMT.

Using partial dependence analysis [see Materials and Methods; 
(56)], we calculate the sensitivity of the CNN’s TMAX prediction to 
the GMT input value. We find that the magnitude of this extreme 

A

B C

Fig. 2. Machine learning–based extreme event attribution for southcentral North America. (A) Daily TMAX predicted by CNNs during June 2023 (gold/green). Results 
for CNNs trained on CanESM5 simulations are shown in gold, and results for CNNs trained on UKESM1-0-LL simulations are shown in green. Solid lines show results for one 
individual CNN, and shading reveals the range of CNN predictions across three CNNs each trained with a different random seed. Actual TMAX values from the European 
Center for Medium-Range Weather Forecasting Reanalysis fifth generation historical reanalysis (ERA5) are also shown (black). (Gray box) Comparison between the event 
ranking in the distribution of actual ERA5 TMAX data and the event ranking in the distribution of CNN predictions (for each CNN used in this analysis). Event rank is calcu-
lated by counting the number of distinct 10-day periods in June to August (JJA) 1979 to 2023 in which the 10-day average TMAX surpasses the average TMAX during the 
19 to 28 June 2023 event. (B) Change in the mean counterfactual TMAX prediction during the 19 to 28 June 2023 event as a function of the GMT input value, for values 
ranging between +0.0° and +4.0°C relative to the 1850 to 1900 baseline period (i.e., the GMT anomaly). (C) The number of 10-day periods hotter than the June 2023 event 
as a function of the GMT anomaly calculated using the counterfactual CNN predictions from the ERA5 input maps during the JJA 1979 to 2023 period. Dashed lines in (B) 
and (C) show the estimated change in event magnitude and frequency predicted by a linear extrapolation of the ERA5 TMAX values to different levels of GMT according 
to the calendar-day linear trend in TMAX (calculated with respect to GMT) from the CanESM5 and UKESM1-0-LL realizations.
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heat event increases roughly linearly as a function of the GMT 
anomaly from the 1850 to 1900 baseline period (Fig. 2B), which 
agrees with results from the most recent IPCC report (4). Our results 
suggest that anthropogenic forcing since 1850 increased the magni-
tude of the 2023 event by 1.18° to 1.42°C (where the range indicates 
the spread across all six CNNs used in this analysis). Likewise, these 
results also suggest that the same meteorological conditions would 
produce an event 2.65° to 3.07°C hotter than the 2023 event if they 
were to occur in a climate with a GMT anomaly of 4.0°C (Fig. 2B).

We also use the daily JJA reanalysis inputs from 1979 to 2023 to 
calculate the frequency of 10-day periods in which the counterfac-
tual CNN predictions are hotter than the 19 to 28 June 2023 period. 
We find that the frequency increases nonlinearly as a function of the 
GMT anomaly (Fig. 2C). These results suggest that the same daily 
JJA meteorological conditions from 1979 to 2023 would produce 0.0 
events per year hotter than the June 2023 event at a GMT anomaly 
of 0.0°C, 0.14 to 0.60 events per year at 2.0°C, and 2.36 to 5.62 events 
per year at 4.0°C (Fig. 2C).

For comparison, we also estimate the change in event magnitude 
and frequency obtained using a linear extrapolation of the ERA5 
TMAX values to different levels of GMT according to the calendar-
day linear trend in TMAX with respect to GMT (calculated from 
the GCM training data). For the UKESM1-0-LL CNNs, we find that 
the results for our counterfactual CNN predictions are similar to the 
estimates obtained from the linear extrapolation method (Fig. 2, B 
and C). In contrast, all three of our CanESM5 CNNs predict a larger 
change in event magnitude compared to the linear extrapolation ap-
proach (Fig. 2B). However, this does not result in a larger change in 
event frequency for the CanESM5 CNNs compared to the linear es-
timates (as we would expect if the CanESM5 CNNs were to system-
atically predict a larger warming rate across all days) (Fig. 2C). The 
difference between these methods suggests the possibility that the 
CNNs predict different warming rates on different days, resulting in 
nonuniform changes in the CNN-predicted TMAX distributions 
with increasing GMT.

Evaluating patterns in CNN-based attribution for 
southcentral North America
We further analyze the CNNs trained over southcentral North 
America to test whether the CNN-predicted sensitivity to increas-
ing GMT is based only on a basic linear regional scaling of TMAX 
with increasing GMT or if the daily meteorological input maps in-
fluence the CNN’s daily attribution estimate. We find that the differ-
ence in counterfactual TMAX predictions between GMT anomaly 
values of 0.0° and 4.0°C (i.e., the daily contribution from anthropo-
genic forcing at 4.0°C) exhibits a strong annual cycle, with the 
calendar-day mean varying between 3.5° and 4.8°C throughout the 
year (Fig. 3A). This suggests that the CNNs have learned seasonal 
differences in the warming rate of regional TMAX with increasing 
GMT. We also find that southcentral North America CNNs predict 
day-to-day variations away from the calendar-day mean annual cy-
cle of contribution at 4.0°C (i.e., “contribution anomalies”), ranging 
from −0.18° to +0.22°C across all JJA days and −0.12° to +0.18°C 
across the hottest 10% of JJA days (Fig. 3B). This suggests that the 
relationship between the GMT input variable and daily TMAX that 
the CNNs have learned from the GCM training dataset changes de-
pending on time of year and the daily meteorological conditions.

To identify what might be causing these day-to-day variations in 
the CNN-predicted contributions at 4.0°C (Fig. 3B), we compare the 

average daily meteorological conditions on days with the 10% high-
est and 10% lowest contribution anomalies on JJA T90 days (Fig. 3, 
C to H). We find statistically significant differences (P < 0.01; 
based on a Student’s t test) between the daily meteorological pat-
terns (TMAX, 500-mbar GPH, and SM anomalies) associated with 
the highest and lowest daily contribution anomalies on the hottest 
10% of JJA days (JJA “T90” days) in the ERA5 dataset (Fig. 3, C to 
H). (Results for SLP, 250-mbar GPH, and 700-mbar GPH are 
shown separately; fig. S4.) More specifically, we find that the days 
with the highest 10% of contribution anomalies tend to have a posi-
tive 500-mbar GPH anomaly situated over southwestern North 
America and a negative 500-mbar GPH anomaly situated over the 
southeastern US. This 500-mbar GPH pattern is conducive to north-
northwesterly flow into southcentral North America originating 
from continental regions north of the prediction region (Fig. 3D). In 
contrast, days with the lowest 10% of contribution anomalies tend to 
have a negative 500-mbar GPH anomaly situated over the western 
US and a positive 500-mbar GPH anomaly situated over the Gulf 
of Mexico (and surrounding regions), which is conducive to south-
southwesterly flow into southcentral North America originating 
from over the Pacific Ocean (Fig. 3G). This suggests that the differ-
ences in daily contribution anomalies predicted by the CNNs are 
influenced by consistent physical differences in the daily meteoro-
logical input maps.

Event attribution for historical extreme events
As a further evaluation of our machine learning–based attribution 
approach, we analyze a number of historical extreme events that 
have been extensively studied using other attribution methods [e.g., 
(7, 19, 59)]. These include the southern Europe heat wave in August 
2003 (fig. S5), the western Russia heat wave in August 2010 (fig. S6), 
and the western India heat wave in March 2022 (fig. S7), all of which 
were either the hottest or second hottest event of the 1979 to 2023 
period over the respective regions (Figs. 4 to 6). Before conducting 
our full attribution analysis, we compare the TMAX predicted by 
the CNNs using the ERA5 meteorological input fields with the ac-
tual ERA5 TMAX during each event (Figs. 4A, 5A, and 6A). The 
mean TMAX predictions for each of the six CNNs fall within 0.29° 
to 2.50°C of the actual TMAX in southern Europe, within 0.37° to 
2.85°C in western Russia, and within 0.38° to 1.07°C in western In-
dia. We also find that 12 of the 18 total CNNs are able to exactly re-
produce the historical event ranking and that all 18 CNNs rank 
these events as either the first, second, or third most extreme events 
over the analysis period (Fig. 4A, 5A, and 6A).

Like the 2023 event in southcentral North America, we find that 
the predicted magnitude of the 2003 southern Europe heat wave in-
creases roughly linearly with increasing GMT, while the predicted 
event frequency increases nonlinearly (Fig. 4, B and C). These re-
sults suggest that anthropogenic forcing (since 1850) increased the 
magnitude of the 2003 southern Europe event by 1.43° to 1.84°C 
and that these same meteorological conditions would produce an 
event 5.38° to 6.33°C hotter than the 2003 event if they were to occur 
in a climate with a GMT anomaly of 4.0°C above the 1850–1900 
baseline period (Fig. 4B). Furthermore, our counterfactual results 
suggest that the same daily JJA atmospheric and land-surface condi-
tions from 1979 to 2023 would produce 0.0 events per year hotter 
than the August 2023 event at a GMT anomaly of 0.0°C, 0.14 to 0.86 
events per year at 2.0°C, and 3.41 to 6.27 events per year at 4.0°C 
(Fig. 4C).
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Similarly, for the 2010 western Russia heat wave, the predicted 
event magnitude also increases linearly with increasing GMT, while 
the predicted event frequency increases nonlinearly (Fig. 5, B and 
C). Our counterfactual results suggest that anthropogenic forcing 
increased the magnitude of the 2010 western Russia event by 1.51° 
to 2.16°C, and these same meteorological conditions would produce 
an event 4.19° to 5.54°C hotter than the 2010 event if they were to 
occur in a climate with a GMT anomaly of 4.0°C above the 1850 to 
1900 baseline period (Fig. 5B). These results also suggest that the 
same daily JJA atmospheric and land-surface conditions from 1979 
to 2023 would produce 0.0 events per year hotter than the August 
2010 event at a GMT anomaly of 0.0°C, 0.05 to 0.11 events per year 
at 2.0°C, and 0.41 to 0.87 events per year at 4.0°C (Fig. 5C).

Lastly, for the 2022 western India heat wave, the predicted event 
magnitude again increases linearly with increasing GMT, while the 
predicted event frequency increases nonlinearly (Fig. 6, B and C). 
Using counterfactual TMAX predictions, we estimate that anthro-
pogenic forcing increased the magnitude of the 2022 western India 
event by 1.20° to 1.71°C, and these same meteorological conditions 
would produce temperatures 2.82° to 3.98°C hotter than the 2022 

event if they were to occur in a climate with a GMT anomaly of 
4.0°C above the 1850 to 1900 baseline period (Fig. 6B). This event 
was especially anomalous because it was a prolonged heat event that 
occurred in March (before the typical April to May pre-monsoon 
warm season) when daily TMAX typically falls in the range 28° to 
34°C. Therefore, to assess the influence of anthropogenic forcing on 
the frequency of similar early-season heat events, we only consider 
18-day events that occur before 01 April [i.e., January to March 
(JFM)]. Our counterfactual results suggest that the same daily JFM 
atmospheric and land-surface conditions from 1979 to 2023 would 
produce 0.0 events per year hotter than the March 2022 event at a 
GMT anomaly of 0.0°C, 0.06 to 0.15 events per year at 2.0°C, and 
0.37 to 0.74 events per year at 4.0°C (Fig. 6C).

Similar to our analysis of the southcentral North America CNNs 
(Fig. 3), we also analyze which factors influence the relationship 
between TMAX and GMT for the CNNs trained on southern Europe 
(Fig. 4, D to K), western Russia (Fig. 5, D to K), and western India 
(Fig. 6, D to K). We conclude that the strength of the relationship 
between daily TMAX and GMT is influenced by the region, the time 
of year, and the daily meteorological conditions. Specifically, we find 

A B

C D E

F G H

Fig. 3. Analysis of counterfactual predictions for CNNs trained over southcentral North America. (A) The calendar-day mean contribution from anthropogenic forc-
ing at 4.0°C (calculated as the difference in counterfactual CNN predictions between GMT anomalies of 0.0° and 4.0°C) for all days in the period 1979 to 2023 (blue line), 
along with the range of contributions on individual days (shading). (B) Distribution of daily anomalies from the calendar-day mean contribution [from (A)] for all June to 
August (JJA) days (gray) and for the hottest 10% of JJA days (i.e., JJA T90 days, red). Also shown are the thresholds for the JJA T90 days with 10% highest and 10% lowest 
contribution anomalies (dashed). (C to E) Mean calendar-day anomaly maps for (C) daily TMAX, (D) 500-mbar GPH, and (E) SM on the JJA T90 days with the 10% highest 
contribution anomalies. (F to H) As in (C) to (E) but for the JJA T90 days with the 10% lowest contribution anomalies. Stippling indicates where there is a statistically sig-
nificant difference (Student’s t test with P < 0.01, N = 42) between the mean anomaly maps for the highest and lowest contribution anomalies. Results in (A) to (H) are 
averaged across all six trained CNNs.
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that the difference between CNN TMAX predictions at GMT = 4.0°C 
and GMT = 0.0°C (i.e., the anthropogenic contribution at 4.0°C) ex-
hibits a strong annual cycle, varying between 3.7° and 7.6°C in south-
ern Europe (Fig. 4D), 5.3° and 7.5°C in western Russia (Fig. 5D), and 
3.3° and 4.9°C in western India (Fig. 6D). These regional differences 
in the magnitude of the annual cycle are consistent with the linear 
trends in seasonal TMAX estimated from the CanESM5 and UKESM1-
0-LL simulations (fig. S8). Aside from the annual cycle, we also find 
that these regions experience day-to-day variations away from the 
calendar-day mean annual cycle of contribution at 4.0°C (i.e., contri-
bution anomalies) that vary from −0.72° to +0.59°C in southern 
Europe JJA (Fig. 4E), −0.95° to +0.76°C in western Russia JJA 
(Fig. 5E), and −0.26° to +0.27°C in western India JFM (Fig. 6E).

To identify which daily meteorological patterns are associated 
with the highest and lowest daily contribution anomalies during a 

specific time of year, we compare the average daily meteorological 
conditions on days with the 10% highest and 10% lowest contribu-
tion anomalies for JJA T90 days in southern Europe (Fig. 4, F to K), 
for JJA T90 days in western Russia (Fig. 5, F to K), and for JFM T90 
days in western India (Fig. 6, F to K). In each of these regions, we 
find statistically significant differences (P < 0.01; based on a Stu-
dent’s t test) between the daily meteorological patterns (TMAX, 
500-mbar GPH, and SM anomalies) associated with the highest and 
lowest daily contribution anomalies. (Results for SLP, 250-mbar 
GPH, and 700-mbar GPH are shown separately; fig. S9). Similar to 
the results from southcentral North America (Fig. 3G), we find that 
the T90 days associated with lower daily warming rates have 500-mbar 
GPH patterns conducive to south-southwesterly flow originat-
ing from over the nearby oceans in southern Europe (Fig. 4J) and 
western India (Fig. 6J). In addition, for western India, we find that 

CBA

D E

F G H

KJI

Fig. 4. Machine learning–based extreme event attribution for southern Europe. (A to C) As in Fig. 2 but for the extreme heat event that occurred in southern Europe 
on 4 to 13 August 2003. (D to K) As in Fig. 3 but for the CNNs trained to predict daily TMAX over southern Europe.
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the T90 days associated with higher daily warming rates have 
500-mbar GPH patterns conducive to north-northwesterly flow 
originating from the continental regions north of the prediction region 
(Fig. 6G), which is similar to the behavior observed in southcentral 
North America (Fig. 3D). In contrast, the meteorological conditions 
in western Russia (Fig. 5, F to K)—which is located in the interior of 
the Eurasian continent—do not exhibit the same patterns observed 
in the other three regions.

DISCUSSION
Our attribution results (Figs. 2 and 4 to 6) agree broadly with the 
“collective attribution” (6) findings in the most recent IPCC report, 
which indicate that annual maximum daily temperatures over the 
global land surface increase roughly linearly with increasing GMT 

(4), while the frequency of extreme heat events increases nonlin-
early (1). This is clearly seen in our analysis of the recent June 2023 
heat wave in southcentral North America, for which our counterfac-
tual CNN predictions suggest a roughly linear relationship between 
TMAX and GMT (including an estimated contribution of 1.18° to 
1.42°C at a GMT anomaly of ~1.2°C above the 1850 to 1900 baseline 
and an additional contribution of 2.65° to 3.07°C at 4.0°C; Fig. 2B) 
and a nonlinear relationship between event frequency and GMT 
(considering 10-day events hotter than the June 2023 heat wave; 
Fig. 2C). We also show that differences in daily meteorological con-
ditions explain differences in the CNN-based attribution estimates 
on summer days over southcentral North America (Fig. 3), suggest-
ing that the influence of anthropogenic forcing on daily TMAX 
differs on the basis of the underlying meteorological conditions. 
Specifically, we find that this region experiences higher rates of 

A B C

D E

F G H

KJI

Fig. 5. Machine learning–based extreme event attribution for western Russia. As in Fig. 4 but for the extreme heat event that occurred in western Russia on 01 to 
06 August 2010.
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warming on days with 500-mbar GPH patterns conducive to 
north-northwesterly flow originating from central North America 
(Fig. 3D) and lower rates of warming on days with 500-mbar GPH 
patterns conducive to south-southwesterly flow originating from 
over the Pacific Ocean (Fig. 3G). These results thus demonstrate an 
additional potential benefit of our machine learning–based attribu-
tion technique, which allows for the attribution estimates to be in-
fluenced by the actual daily meteorological conditions that occur 
during an extreme event, leading to nonuniform changes in the 
CNN-predicted TMAX distribution with increasing GMT. Although 
there is some observational evidence suggesting that different 
groups of days experience different rates of warming [e.g., extreme 
cold days are warming faster than extreme hot days, (4)], more 

research is needed to better understand how the rate of warming 
may be different for different meteorological patterns (31).

Comparison with previously published results
As part of the evaluation of our method, we perform machine learning–
based extreme event attribution analyses for several historical ex-
treme heat events that have been previously studied using established 
attribution techniques (Fig. 4 to 6). Although different attribu-
tion studies often use different analysis periods, analysis regions, 
and attribution metrics, we find that our results broadly agree with 
previous studies. For the 2003 southern Europe event, we find that 
anthropogenic forcing contributed 1.43° to 1.84°C to the overall 
magnitude of the event (Fig. 4B). In comparison, by analyzing 2000 

A B C

D E

F G H

KJI

Fig. 6. Machine learning–based extreme event attribution for western India. As in Fig. 4 but for the extreme heat event that occurred in western India on 14 to 
31 March 2022.
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regional climate model simulations with and without anthropogenic 
forcing, Mitchell et al. (60) found that anthropogenic forcing con-
tributed 1.0°C to the mean temperature across continental Europe 
during JJA 2003. For the 2010 western Russia event, our results sug-
gest that anthropogenic climate change since 1850 contributed 1.51° 
to 2.16°C to the overall magnitude of the event (and that climate 
change since 1980 has contributed 0.77° to 1.09°C) (Fig. 5B). This 
result is consistent with Wehrli et al. (61), who used regional climate 
model experiments to show that recent climate change (since 1980) 
contributed about 1.2°C to the temperature anomaly in western 
Russia during the period 15 July to 14 August 2010. Similarly, for the 
2022 western India event, our results suggest that anthropogenic 
forcing contributed 1.20° to 1.71°C to the overall magnitude of the 
event and that these same meteorological conditions would produce 
an event 0.80° to 1.15°C warmer than the 2022 event if they were to 
occur in a climate with a GMT anomaly of 2.0°C above the 1850 to 
1900 baseline (Fig. 6B). These findings broadly agree with Zachariah 
et al. (19), which applied a probability-based framework to show 
that anthropogenic forcing contributed about 1.0°C (95% confi-
dence interval of 0.2° to 2.1°C) to the March to April 2022 mean 
TMAX in this region, with an additional contribution of 1.0°C (95% 
confidence interval of 0.3° to 1.7°C) expected if this event were to 
occur under 2.0°C of global warming.

We also apply our technique to calculate the influence of anthro-
pogenic forcing on the frequency of extreme events using the daily 
meteorological conditions from all seasonal days in the 1979 to 2023 
reanalysis as input to the CNNs. For each of these three historical 
events, we find a nonlinear increase in event frequency with increas-
ing GMT (Fig. 4C, 5C, and 6C). In particular, our counterfactual 
TMAX predictions suggest that these historical events (which are 
the first or second most extreme events in the 1979 to 2023 period) 
will increase nonlinearly in frequency as the GMT anomaly in-
creases to 4.0°C above the 1850 to 1900 baseline, occurring 3.41 to 
6.27 times per year for the southern Europe event, 0.41 to 0.87 times 
per year for the western Russia event, and 0.37 to 0.74 times per year 
for the western India event.

There are some challenges in quantitatively comparing our coun-
terfactual frequency results at 0°C of global warming against previous 
extreme event attribution assessments that used different frequency 
metrics to attribute changes in event probability between the pre-
industrial and the present. For example, in what is widely considered 
to be the original attribution study, Stott et al. (7) used generalized 
Pareto distributions to estimate the influence of anthropogenic forc-
ing on the probability of the 2003 Europe event, concluding with 
>90% confidence that human-caused climate change doubled 
the probability of extreme temperatures. Likewise, Rahmstorf and 
Coumou (59) estimated an ~80% probability that the record-breaking 
July 2010 monthly mean temperature in western Russia occurred 
as a result of climate change. Similarly, Zachariah et al. (19) used 
the World Weather Attribution framework (17) to determine that 
anthropogenic climate change made the March to April 2022 event 
in western India ~30 times more likely than it would have been un-
der preindustrial levels of climate forcing.

In theory, we could quantitatively compare our frequency results 
with these previous attribution studies by calculating the ratio be-
tween our CNN-based predictions of event frequency at current 
levels of GMT and preindustrial levels of GMT. However, while our 
machine learning–based approach enables a more comprehensive 
quantification of the sensitivity of event frequency to changes in 

GMT compared with strict storyline approaches, the limited sample 
size available in the historical reanalysis data (i.e., 4109 JJA days and 
4061 JFM days in the ERA5 dataset) poses a major limitation in es-
timating the frequency of extreme events under preindustrial levels 
of GMT. For example, our counterfactual results suggest a frequency 
of 0.0 events per year at a GMT anomaly of 0.0°C for each extreme 
event in this analysis, although the probability of these extreme 
events is likely nonzero at preindustrial levels of GMT (62).

We emphasize that our approach—which uses reanalysis data as 
out-of-sample input for CNNs trained on GCM simulations—is 
based on the actual daily meteorological conditions that occurred 
during the recent historical period. For the event intensity, this has 
the advantage of other storyline techniques in that our estimate for 
each individual event is based on the actual meteorological condi-
tions during that event. In contrast, this means that our CNN-based 
counterfactuals can only provide a partial assessment of attribution 
(21) because we do not allow for possible climate-driven changes in 
atmospheric dynamics to influence our daily CNN TMAX predic-
tions. For example, our CNN predictions of event frequency (which 
are based on the exact population of daily meteorological conditions 
that occurred in 1979 to 2023) provide an incomplete assessment of 
attribution (21) because they do not account for potential changes 
in the likelihood of extreme atmospheric circulation patterns over 
the analysis region [e.g., (31, 33)]. We therefore urge caution in us-
ing our frequency results to calculate precise changes in probability 
ratios at very low GMT anomaly values. However, since climate-
driven changes in the frequency of atmospheric circulation patterns 
are highly uncertain and poorly understood (35), we present this 
CNN-based prediction approach for estimating event frequency as 
an alternative to techniques that rely on raw GCM-simulated event 
frequencies.

Generalizability to other extreme events
Our results suggest that this machine learning–based attribution 
framework may be generalizable to other extreme heat events, other 
types of extreme weather, and other regions of the world. To further 
probe the limitations of our approach, we also examine two cases in 
which the trained CNNs exhibit substantial biases relative to the 
original ERA5 TMAX values. Given these biases, we conclude that 
these CNNs should not be used to quantify attribution metrics for 
the respective extreme events. As a first cautionary example, we con-
sider the Pacific Northwest heat wave that occurred in June 2021 
(fig. S10). This extreme event reached its peak intensity on 27 to 
30 June (fig. S11), during which the average ERA5 TMAX was 35.80°C, 
which is the single hottest 4-day period over this region in the ERA5 
reanalysis. Our six CNNs substantially underestimate the magni-
tude of this event, predicting TMAX to be 4.32° to 7.15°C lower than 
the actual ERA5 reanalysis TMAX. Moreover, the six CNNs rank 
this event as the 3rd, 12th, 14th, 38th, 50th, and 60th hottest 4-day 
events in the entire time series of CNN predictions for the 1979 to 
2023 period (fig. S10A). Since our CNNs cannot accurately repre-
sent the magnitude and historical rank of this extreme event, we do 
not recommend using these CNNs to perform an attribution analy-
sis of this event, as the CNN’s underrepresentation of the event mag-
nitude and rank may lead to unrealistic attribution results. For 
example, for the three CNNs trained on the UKESM1-0-LL simula-
tions, our framework suggests the Pacific Northwest region should 
experience an average of 1.11 to 1.88 events per year at a GMT 
anomaly of 1.0°C above the 1850 to 1900 baseline (fig. S10C). In 
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reality, this event is far more rare in the current climate (63), sug-
gesting that the biased CNNs do indeed generate attribution results 
that are unrealistic. We do not find a large bias in the mean climatol-
ogy of TMAX in the GCM datasets used to train the CNNs for the 
Pacific Northwest analysis (fig. S12A). This suggests that the bias in 
the CNN predictions for the 2021 Pacific Northwest event likely 
results from the complexity of the physical processes driving this 
particular extreme event. Climate model experiments suggest that 
temperatures during the 2021 Pacific Northwest heat wave were en-
hanced by multi-day heat accumulation facilitated by the combina-
tion of a strong omega block, deep atmospheric boundary layers, 
and upwind latent heating in the days leading up to the event (64). 
The absence of detailed information about these processes (e.g., 
boundary layer height and latent heating) and their temporal evolu-
tion in our daily CNN input maps may lead to inaccurate predic-
tions when the trained CNNs are confronted with the ERA5 input 
maps from the actual event (fig. S11).

As a second cautionary example, we evaluate the ability of the 
CNNs used to analyze the March 2022 event in western India (Fig. 6) 
to predict JJA TMAX over the same region. These CNNs are trained 
using input from all calendar days, and although they perform quite 
well when predicting daily TMAX in January to April of 2022, they 
exhibit a pronounced bias when predicting daily TMAX in June to 
August of 2022 (e.g., +6.9°C relative to the ERA5 reanalysis for 
CanESM5 CNNs), making them unreliable for attribution analyses 
during the summer season (fig. S13B). Furthermore, we find that a 
similar bias in the annual cycle of TMAX is also present in the GCM 
datasets used to train these CNNs (fig. S13A), suggesting that the 
bias was inherited from the GCMs during the CNN training pro-
cess. These two cautionary examples suggest that CNN prediction 
biases can result from either insufficient information about complex 
physical processes in the daily input maps or from biases in the 
mean climate of the GCM training data. Since biases in CNN TMAX 
predictions may lead to unrealistic attribution assessments (fig. S10), 
we emphasize the need to evaluate the ability of the CNNs to predict 
the actual extreme event before moving forward with machine 
learning–based counterfactual analysis.

Further, generalizing beyond extreme heat events, this technique 
could also be used to make attribution assessments for other types of 
extreme events (e.g., heavy precipitation and droughts), provided 
that sufficient GCM training data are available and the trained 
CNNs are able to accurately predict the key characteristics of the 
event. As an example, we apply this machine learning–based attri-
bution framework to analyze extreme precipitation in the US Pacific 
Northwest (fig. S14). Following the same methodology as the heat 
wave analysis (with a few minor changes; see the Supplementary 
Materials for details), we determine that anthropogenic climate 
change since 1850 has increased the magnitude of the extreme pre-
cipitation event that occurred on 03 December 2007, by 1.0 to 2.4% 
(fig. S14B). Our counterfactual precipitation predictions also sug-
gest an increase in the frequency of similar extreme events with in-
creasing GMT (fig. S14C), although our ability to estimate changes 
in the frequency of precipitation extremes is limited by the long, 
thin tail of the precipitation distribution and the limited sample size 
of historical weather conditions (fig.  S14E). More generally, our 
CNNs predict that rainfall intensity on extreme wet days (above the 
99th percentile; P99 days) will increase at an average rate of ~3.2% 
for each 1.0°C increase in GMT (with individual P99 days ranging 
between 0.6 and 4.8% per °C) (fig. S14D). We also find that the 

frequency of P99 days is expected to increase from 1.96 days per 
year at a GMT anomaly of 0.0°C to 2.96 days per year at 2.0°C, and 
4.50 days per year at 4.0°C (fig. S14E). Although we have not shown 
that our framework is transferable to all types of extreme events, this 
analysis of extreme precipitation suggests that our approach may be 
used to conduct attribution analyses across a wider range of ex-
tremes than just temperature.

Last, the computational efficiency of our approach is an impor-
tant feature that makes our framework generalizable to different 
types of extreme events, different regions of the world, and differ-
ent attribution timescales (e.g., rapid attribution). First, the ability 
to efficiently train CNNs for different events and regions using 
large ensembles of existing climate model simulations greatly en-
hances the generalizability, provided that the networks are able to 
predict the key characteristics of the event with sufficient accuracy. 
In addition, the computational efficiency of this technique also 
raises the possibility that our approach could be used for rapid at-
tribution, which aims to have the attribution analysis available as 
close as possible to the occurrence of an extreme event (17, 65). 
While most storyline-based attribution approaches are not used for 
rapid attribution assessments unless a large amount of computing 
resources are available [e.g., (25)], our approach can efficiently cre-
ate multiple counterfactual realizations of an individual extreme 
event without requiring expensive additional climate model simu-
lations. The main temporal limitation of the analysis we present 
here is the availability of ERA5 input maps, which are released with 
a delay of about 5 days (66). Although a separate CNN needs to be 
trained for each analysis region, we find that different regional 
CNNs can be trained using the same model architecture. As a 
result, the CNNs used in this study do not require extensive com-
putational resources or training time (~2 hours on 12 CPUs). To 
further speed up this analysis, these CNN models can be pretrained 
(using previously simulated GCM data) over any region of the 
globe and rapidly implemented as soon as the reanalysis input 
maps become available. These advances also raise the possibility 
that this technique could contribute to operational extreme event 
attribution (65, 67) by using weather forecasting data as inputs for 
pretrained CNNs to perform attribution analyses before, during, 
and/or immediately following an extreme event.

Additional sources of uncertainty
In this study, we explore a number of the potential sources of uncer-
tainty in our machine learning–based approach to extreme event 
attribution. For example, we compare the spread of results across 
three individual CNNs to assess the sensitivity of our results to ran-
domness in the CNN training process. In addition, we have shown 
that our attribution results may be influenced by biases between the 
GCMs and the ERA5 reanalysis (fig. S13). These issues can be large-
ly avoided by evaluating the ability of the CNNs to reproduce the 
magnitude and historical ranking of an extreme event before pro-
ducing attribution results. Despite these precautions, biases in the 
GCM training datasets create an additional source of uncertainty in 
our CNN-based attribution results. Therefore, to probe the range of 
results caused by differences between the GCM training datasets, we 
compare attribution results between CNNs trained using data from 
two different GCMs (CanESM5 and UKESM1-0-LL). In addition, to 
reduce biases in the CNN predictions, CNNs may be trained using 
the GCMs that have the smallest bias for the particular variables and 
analysis region, or by using bias-corrected GCM datasets [e.g., (68), 
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although data availability for the full period from the preindustrial 
to present is limited]. Alternatively, different historical reanalysis 
datasets could also be used to ensure that GCM biases are not spe-
cific to one particular reanalysis product [e.g., (69)]. We also show 
that CNNs may under-predict the magnitude of heat waves in 
which the temperatures are enhanced by complex physical process-
es that are not well-represented in the CNN input data (e.g., the 
2021 Pacific Northwest heat wave; fig. S10). This issue may be 
avoided by including additional input variables (such as latent heat 
release) from several days leading up to an extreme event to allow 
the CNN to learn more complex physical relationships that can en-
hance temperatures during an event (64). In addition, biases in the 
CNN predictions may be reduced by increasing the number of 
GCM realizations in the CNN training dataset to provide a larger 
sample of meteorological conditions from which the CNNs are able 
to learn, or by using ensemble boosting [which uses initial condi-
tion ensembles to generate additional simulations of individual ex-
treme events in existing GCM simulations, (65)] to artificially 
increase the frequency of extreme circulation events in the GCM 
training datasets.

Future research
While the initial results from our machine learning–based attribu-
tion approach are promising, more analysis is needed before these 
results can be used for high-stakes applications such as improving 
adaptation decisions, attributing climate damages, and informing 
climate litigation. In particular, a thorough assessment of the other 
potential sources of uncertainty is needed. These include quantify-
ing uncertainty using an even larger ensemble of CNNs (each with 
different model architectures, hyperparameters, and training out-
comes), comparing CNNs trained on a larger number of GCMs 
(subject to availability of the necessary input variables at daily tim-
escales), and incorporating GCM training data from different future 
emission scenarios (e.g., net-zero scenarios such as SSP1-2.6 and 
SSP1-1.9). Although the computational efficiency of this attribution 
framework makes our approach a promising tool for quantifying 
uncertainty in storyline attribution analyses, designing and testing 
appropriate architectures will require further work.

Our machine learning–based technique presents potential ad-
vances in the field of extreme event attribution. In addition to 
demonstrating the general potential for machine learning–based at-
tribution techniques, we show specifically that CNNs trained on 
GCM simulations can be used to create counterfactual versions of 
extreme events using the actual daily meteorological conditions to 
make out-of-sample predictions of event magnitude under different 
levels of GMT. Using the actual meteorological conditions in a truly 
predictive framework increases the fidelity of the calculated coun-
terfactual intensities and frequencies. In addition, the computation-
al efficiency of this approach increases generalizability to different 
extreme events, different regions, and different attribution times-
cales (e.g., rapid attribution). Together, this initial study suggests 
that our machine learning–based extreme event attribution ap-
proach is a promising tool that can be used for rapid, low-cost at-
tribution analysis of individual extreme events. By demonstrating 
the potential for machine learning–based extreme event attribution, 
we hope to open future research into additional applications of ma-
chine learning to better understand the influence of historical and 
future climate change on different types of extreme events in differ-
ent regions of the world.

MATERIALS AND METHODS
Experimental design
We develop a framework for using machine learning techniques to 
evaluate the contribution of human-caused climate change to indi-
vidual extreme events (Fig. 1) and apply that framework to multiple 
recent and historical extreme heat events. To perform this analysis, 
we first train multiple CNNs to predict daily TMAX across a range 
of past and future climates using training data from an individu-
al GCM over the 1850 to 2100 period (Fig. 1A). Then, we use 
these trained CNNs to predict TMAX during an individual his-
torical extreme event using unseen input data from the ERA5 his-
torical reanalysis dataset. After confirming that these trained CNNs 
accurately reproduce the magnitude and historical ranking of the 
actual extreme event when given historical reanalysis data as inputs, 
we use partial dependence analysis to create counterfactual versions 
of the extreme event under different levels of annual GMT (Fig. 1B). 
By calculating the sensitivity of our counterfactual CNN predictions 
to the GMT input value, we quantify the contribution of anthropo-
genic forcing to the event magnitude and estimate the sensitivity of 
event frequency to changes in GMT (conditional on the daily me-
teorological conditions that occurred during the season of interest 
from 1979 to 2023) (Fig. 1C). We repeat this analysis using training 
data from two different GCMs to explore how structural differences 
between GCMs might affect the results.

CNN training datasets
We construct CNN training datasets that use several climate vari-
ables simulated by a GCM as predictors of regional average daily 
TMAX. Each of these training datasets consists of the following in-
put variables: daily SLP, daily GPH on three pressure surfaces (700, 
500, and 250 millibars), daily SM from the 0- to 10-cm layer, calen-
dar day (normalized between 0 and 1), and the GMT averaged over 
the previous 12 months (normalized between 0 and 1). We selected 
this set of daily input maps (SLP, GPH, and SM) to provide daily 
information about the state of the large-scale atmospheric circula-
tion and the top-layer of the land surface; however, we do not claim 
that this is the optimal set of input variables for this prediction task.

To create these training datasets, we use an ensemble of CMIP6 
simulations under historical greenhouse gas forcing (from 1850 to 
2014) and the IPCC’s “very high” future emissions scenario (SSP5-
8.5; from 2015 to 2100). We use the very high emissions scenario to 
ensure that our training data contain extreme events that occur 
across the broadest range of GMTs. Although there are 39 CMIP6 
GCMs with simulations of the historical and SSP5-8.5 scenarios, our 
analysis requires three-dimensional atmospheric output available at 
daily time steps from multiple realizations of the 1850 to period. 
This requirement substantially limits the availability of GCMs for 
this analysis. Therefore, for this initial application of our technique, 
we use realizations from each of two CMIP6 GCMs for which large 
ensembles of daily data are available (CanESM5 and UKESM1-0-
LL). From each of these GCM datasets, we select five realizations 
with perturbed initial conditions that were simulated with the same 
forcing and physics configurations. To explore the sensitivity of our 
results to differences between the GCMs, we construct a separate 
CNN training dataset for each of these two GCMs. For each GCM 
dataset, we download GPH (at 700, 500, and 250 mbar), SM (from 
the upper portion of the soil column), SLP, and TMAX at daily tim-
escales from five different realizations of the 1850 to 2100 period. 
We use bilinear interpolation to convert the daily GPH, SM, and SLP 
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input maps to a common rectangular grid with 2.8125° × 2.8125° 
horizontal resolution (128 longitude points × 64 latitude points). 
We also calculate the area-weighted global average of monthly near-
surface air temperature for each GCM realization (1850 to 2100) 
and compute the 12-month moving average to obtain each month’s 
annual GMT value. Since this GMT calculation requires monthly 
temperature data from the preceding 12 months, we use the daily 
GCM data from 1851 to 2100 (and the monthly GCM temperature 
data from 1850 to 2100) to train our CNNs.

Before CNN training, we remove the grid-cell calendar-day lin-
ear trends in GPH, SLP, and SM calculated with respect to the GMT 
for each GCM realization (fig. S15). This detrending removes any 
linear correlation between the GMT input and the GPH/SLP/SM 
input maps caused by nonuniform thermal dilation of the tropo-
sphere [for GPH; (31)] and/or trends in precipitation and evapo-
transpiration [for SM; (1)] and ensures that the linear signal from 
anthropogenic climate change has been removed from all neural 
network input variables except the GMT input. Therefore, the CNN 
will rely on the daily GPH, SLP, and SM anomalies to explain daily-
scale TMAX variability, while the GMT input variable is used to ac-
count for the effects of anthropogenic forcing on TMAX (driven by 
long-term trends in air temperature, humidity, thermal dilation, 
SM, etc.). To improve the training process, we normalize the GPH, 
SLP, and SM inputs by subtracting the grid-cell calendar-day mean 
and dividing by the grid-cell calendar-day SD for each GCM simula-
tion. We also scale the GMT inputs into the range 0 to 1 by subtract-
ing the minimum GMT and dividing by the range of GMT values 
from the entire 1850 to 2100 period. After processing this training 
data, we split the GCM datasets into training, validation, and testing 
subsets, using three GCM realizations (i.e., three simulations of 
1850 to 2100 at daily timescales) for CNN training, one GCM real-
ization for CNN validation, and one GCM realization for CNN test-
ing (which is left out of the training process entirely).

To evaluate our machine learning–based attribution approach, 
we analyze one very recent extreme heat event (southcentral North 
America in June 2023) and several historical extreme heat events 
that have been studied using established attribution techniques: 
southern Europe in 2003 (7); western Russia in 2010 (61); western 
India in 2022 (19); and the US Pacific Northwest in 2021 (63). We 
create separate CNN training datasets for each extreme event in this 
study and then train CNNs to predict the daily TMAX averaged 
over all non-ocean grid cells in the analysis region.

The analysis regions for each heat event in this study are defined 
as follows: southcentral North America (21° to 37°N, −106° to 
−92°E), southern Europe (43° to 53°N, 0° to 20°E), western Russia 
(51° to 59°N, 37° to 53°E), western India (20° to 30°N, 65° to 80°E), 
and the US Pacific Northwest (41° to 51°N, −125° to −115°E). To 
give sufficient spatial context for each TMAX prediction, we use 
broad spatial input maps (roughly 35° latitudinally and 85° longitu-
dinally) for the GPH/SLP/SM inputs centered on each analysis re-
gion (34, 58).

CNN architecture
We train CNNs (Fig. 1A) to predict daily TMAX over the analysis 
region using training data from several GCM simulations over the 
1850 to 2100 period (see details of training datasets in the CNN 
training datasets section above). For each CNN, the two-dimensional 
input maps (i.e., GPH, SLP, and SM) are passed through two convo-
lutional layers (eight 3 by 3 filters with sigmoid activation) followed 

by a 2 by 2 max pooling layer. The resulting feature vector is 
then flattened into a one-dimensional vector, and the normalized 
calendar-day and GMT inputs are concatenated to the end. This vec-
tor is passed through two dense layers (32 filters with sigmoid acti-
vation), after which a final linear activation outputs the daily TMAX 
prediction. During the training process, we pass the daily GCM in-
puts into a CNN and compare the model’s TMAX prediction against 
the actual daily TMAX (calculated from the true GCM output) and 
adjust the CNN’s weights and biases to minimize the loss function 
(mean squared error) on the GCM validation dataset. Multiple 
model architectures and hyperparameter combinations were tested 
to identify an architecture that performs well on the GCM valida-
tion dataset (tuning results not shown). To avoid issues caused by 
the nonuniform TMAX distributions, we use the DenseWeight al-
gorithm (70) to modify the loss function during the training process 
(using sample weights inversely proportional to the sample frequen-
cies). We use Tensorflow with Keras 2.7.0 (71) to construct and train 
each CNN model.

Extreme event attribution using CNNs
After training the CNNs on GCM data (see details in sections CNN 
training datasets and CNN architecture above), we make out-of-
sample TMAX predictions for individual extreme events in the his-
torical record using the actual daily meteorological conditions from 
the ERA5 historical reanalysis dataset as input maps for the trained 
CNNs. We download the ERA5 dataset (72) over the period January 
1979 through July 2023 and aggregate the hourly ERA5 data to obtain 
daily maps of SLP, SM content (from 0- to 7-cm soil layer), and GPH 
(at 700-, 500-, and 250-mbar levels). Similarly, we download the ERA5-
Land dataset (73) over the same 1979 to 2023 period and aggregate the 
hourly ERA5 data to obtain daily maps of SM content (from 0- to 7-cm 
soil layer). Using bilinear interpolation, we convert the daily SLP, SM, 
and GPH input maps from the ERA5 dataset to a rectangular grid with 
2.8125° × 2.8125° horizontal resolution (128 longitude points × 
64 latitude points) to match the GCM training data. We also calculate 
the area-weighted global average of the monthly ERA5 2-m tempera-
ture data and compute the 12-month moving average to obtain 
each month’s GMT value. Since this GMT calculation relies on 
monthly temperature data from the preceding 12 months, we include 
monthly ERA5 temperature data from 1978 to calculate the monthly 
GMT values for 1979. Similar to the GCM training datasets, we re-
move the grid-cell calendar-day linear trends in the ERA5 GPH, SLP, 
and SM fields (calculated with respect to the ERA5 GMT) and normal-
ize the daily input maps by subtracting the ERA5 grid-cell calendar-
day mean and dividing by the ERA5 grid-cell calendar-day SD. We 
also scale the ERA5 GMT inputs into the range 0 to 1 by subtracting 
the minimum GCM GMT and dividing by the range of GCM GMT 
values (calculated across all five GCM realizations of the 1850 to 2100 
period). We use the area-weighted average values for daily TMAX over 
the analysis region as our target data to assess the performance of the 
neural network on the unseen ERA5 dataset.

To evaluate the performance of our CNNs on the ERA5 dataset, 
we compare the event magnitude and event rank for each extreme 
event between the CNN TMAX predictions and the actual ERA5 
TMAX values. We calculate event rank by counting the number of 
distinct periods in the TMAX time series that are more extreme 
than the extreme event (in terms of magnitude and/or duration).

Then, to determine how anthropogenic forcing may influence 
the frequency and intensity of individual extreme events, we use 
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partial dependence analysis (56) to calculate counterfactual TMAX 
values for individual days in the historical record under different 
levels of GMT (Fig. 1B). To calculate these counterfactual TMAX 
predictions, we use the daily ERA5 input maps from each individual 
day in the extreme event and let the GMT input vary across a range 
of annual values observed in the GCM simulations (i.e., a discrete 
set of GMT values uniformly distributed—at 0.05°C increments—
from +0.0° to +4.0°C relative to the 1850 to 1900 GCM mean across 
all realizations). Then, we pass these input combinations through 
the trained CNN to quantify how the daily TMAX predictions 
change as a function of GMT for the actual meteorological condi-
tions that occurred during the extreme event (Fig. 1C). We repeat 
this process across all samples in the ERA5 dataset (1979 to 2023) 
from the 3-month season in which the event occurred (e.g., June to 
August) to generate a counterfactual time series of ERA5 TMAX 
values for each level of GMT. We then analyze these counterfactual 
TMAX time series to quantify the sensitivity of extreme event fre-
quency to changes in the GMT (conditional on the actual daily 
meteorological conditions that occurred from 1979 to 2023). For 
example, given a 10-day event in boreal summer with a mean TMAX 
of 30°C, we obtain the event frequency in the counterfactual June to 
August time series by counting the number of periods at least 10 days 
in duration in which the mean TMAX is greater than or equal 
to 30°C, counting fractional events when necessary (i.e., an 11-day 
period will be counted as 11/10 = 1.1 events).

To examine some of the potential sources of uncertainty in this 
analysis, we train three separate CNNs for each analysis region (with 
each CNN trained using a different random seed). Comparing the 
spread of results across these three individual CNNs (Fig. 1C) allows 
us to quantify some of the possible variation in our results caused by 
randomness during the CNN training process. In addition, we re-
peat this analysis using two different GCM training datasets (de-
scribed in section CNN training datasets above) to explore the 
sensitivity of our results to differences between GCMs. This gives us 
a total of six CNNs (three trained on each GCM dataset) to use for 
the attribution analysis of each extreme event.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S15
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