
1. Introduction
Since the early 1980s, climate model experiments have confirmed that soil moisture content (SM) influences 
near-surface air temperature by modulating the surface energy budget (Shukla & Mintz, 1982). This coupled 
relationship between soil moisture and temperature (hereafter, “SM-T coupling”) results from complex interac-
tions between the land surface and the atmosphere. In regions with strong SM-T coupling, SM content controls 
the partitioning of downwelling radiation into latent and sensible heat fluxes, resulting in a positive feedback 
mechanism through which dry soils lead to higher temperatures and further soil drying, while wet soils gener-
ally lead to cooler temperatures (Seneviratne et  al.,  2010). Second-order positive feedback mechanisms have 
also been observed between SM, boundary layer growth, 1000–500-hPa thickness, and near-surface temperature 
(Fischer et al., 2007; Miralles et al., 2014; Quesada et al., 2012; Seneviratne et al., 2010). These SM-T coupling 
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mechanisms tend to be strongest in transitional regimes between wet and dry climates, which is consistent with 
the theoretical framework of Seneviratne et al. (2010). In wet and dry climate regimes, near-surface temperature 
is less sensitive to SM (i.e., decoupled) since evapotranspiration is limited by radiation and soil properties, respec-
tively (Seneviratne et  al.,  2010). However, in transitional climate regimes, near-surface temperature is highly 
sensitive to SM content because small changes in SM influence evapotranspiration, which directly affects latent 
and sensible heat fluxes (Seneviratne et al., 2010). Together with SM content, differences in soil characteristics 
(e.g., albedo, porosity, texture) and land cover type also drive regional differences in SM-T coupling strength 
(Dennis & Berbery, 2021; Hirsch et al., 2014).

SM-T coupling has both local (Durre et al., 2000; J. Liu & Pu, 2019) and non-local (i.e., downwind) effects 
(Schwingshackl et al., 2018; Seneviratne et al., 2013; Vautard et al., 2007) that occur on daily, monthly, and 
seasonal time scales (Durre et al., 2000; Fischer et al., 2007; Koster et al., 2006; J. Liu & Pu, 2019; Vautard 
et al., 2007). Deep soil layers (10–200 cm) have longer SM memory (Wu & Dickinson, 2004), which makes 
these layers more important for monthly- and seasonal-scale SM-T coupling (Koster et al., 2006). In contrast, 
the uppermost soil layer (<10 cm) has the greatest influence on daily-scale SM-T coupling (J. Liu & Pu, 2019). 
Further, the potential for SM-T coupling is highest during daylight hours in the summer months (due in large part 
to the maximum of downwelling solar radiation; Durre et al., 2000; Koster et al., 2006; J. Liu & Pu, 2019), which 
makes daily-scale SM-T coupling especially relevant for producing extreme daily maximum summer tempera-
tures (Diffenbaugh et al., 2007; Miralles et al., 2014; Schwingshackl et al., 2017; Seneviratne et al., 2010; Vogel 
et al., 2017). As a result, we focus our analysis primarily on daily-scale coupling between top-layer SM and daily 
maximum 2-m temperature in the summer months.

Over the past two decades, many studies have quantified regional differences in SM-T coupling strength using 
observational (Chen et al., 2019; Dirmeyer, 2011; Koster et al., 2009; Mei & Wang, 2012; Miralles et al., 2012; 
Spennemann et al., 2018; Teuling et al., 2009) and model-derived datasets (Fischer et al., 2007; Jaeger et al., 2009; 
Koster et al., 2006, 2009; Mei & Wang, 2012; Ruscica et al., 2014; Schwingshackl et al., 2017; Seneviratne, 
Lüthi, et al., 2006). Global assessments of SM-T coupling strength typically involve comparing climate model 
simulations under different SM scenarios (e.g., Fischer et  al.,  2007; Koster et  al.,  2006; Seneviratne, Lüthi, 
et al., 2006) or analyzing linear statistics (e.g., correlation coefficients) between land-surface and/or atmospheric 
variables (e.g., Diffenbaugh & Ashfaq, 2010; Dirmeyer, 2011; Jaeger et al., 2009; Seneviratne, Lüthi, et al., 2006; 
Teuling et al., 2009). Regardless of the methodology, previous assessments broadly agree on certain transitional 
climate regimes as “hot spots” of SM-T coupling (e.g., the US Southern Great Plains, the Sahel region in Africa, 
areas of the Indian subcontinent). However, these studies consistently disagree on the relative magnitudes of 
SM-T coupling strength within certain regions. Inconsistencies between SM-T coupling studies can result from 
numerous sources, including climate model disagreement (Gevaert et al., 2018), model initializations (Fischer 
et al., 2007), experimental design (e.g., potential sea surface temperature effects; Koster et al., 2006), and differ-
ences between climate model and reanalysis datasets (e.g., stronger SM-evaporative fraction coupling in reanal-
ysis compared to climate models; Mei & Wang, 2012). In climate model-based assessments of SM-T coupling, 
additional inconsistencies can be caused by differences in model parameterization of soil hydraulic properties, 
plant hydraulic properties, vegetation type, and land use (Dennis & Berbery, 2021; Hirsch et al., 2014).

Importantly, analyses of SM-T coupling strength (e.g., Dirmeyer, 2011; Fischer et al., 2007; Jaeger et al., 2009; 
Koster et  al.,  2006; Menéndez et  al.,  2019; Miralles et  al.,  2012; Ruscica et  al.,  2014; Seneviratne, Lüthi, 
et al., 2006; Teuling et al., 2009) have tended to use idealized climate model experiments and/or linear statistical 
methods to explain SM-T coupling. However, evidence suggests that the sensitivity of temperature to SM changes 
for different values of SM (Benson & Dirmeyer, 2021; Jaeger & Seneviratne, 2011; Seneviratne et al., 2010). This 
nonlinear relationship between temperature and SM is difficult to estimate using climate model experiments, 
requiring a large number of sensitivity experiments with slightly perturbed SM conditions repeated over numer-
ous different atmospheric initializations (Fischer et al., 2007; Seneviratne et al., 2010). There is thus an opening 
for nonlinear statistical methods that can comprehensively assess SM-T coupling relationships without requiring 
extensive climate model simulations.

Deep neural networks have recently surged in popularity for their ability to learn complex nonlinear interac-
tions between input and output variables (LeCun et al., 2015). Convolutional neural networks (CNNs) are one 
particular form of deep learning architecture that are designed to analyze gridded input data such as images 
and geospatial data (LeCun et  al.,  1989). To date, CNNs have been used extensively in the geosciences for 
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image classification (Chilson et al., 2019; Davenport & Diffenbaugh, 2021; Jergensen et al., 2019; Lagerquist 
et al., 2019; Y. Liu et al., 2016; Wang et al., 2016; Wimmers et al., 2019), model parameterization (Bolton & 
Zanna,  2019; Han et  al.,  2020; Larraondo et  al.,  2019; Pan et  al.,  2019), and forecasting (Ham et  al.,  2019; 
Jacques-Dumas et  al.,  2021) applications. CNN models contain thousands (or millions) of trainable weights 
which are optimized during the training process to ensure that the CNN's output predictions closely resemble 
the target data. In addition, these CNN models utilize nonlinear mathematical functions to represent the complex 
nonlinear relationships between the geospatial input maps and output predictions. After the training process is 
complete, machine-learning (ML) model interpretation and visualization methods can be used to aid in interpret-
ing the predictions of trained CNNs (e.g., layer-wise relevance propagation, S. Bach et al., 2015; backward opti-
mization, Olah et al., 2017). These ML interpretation methods have been used in the geosciences to confirm that 
a model's predictions are based on the inputs in a physically meaningful way (Davenport & Diffenbaugh, 2021; 
Diffenbaugh & Barnes,  2023; Gagne et  al.,  2019; McGovern et  al.,  2019). More recently, studies have also 
begun to use ML interpretation methods to gain new insights into physical processes (Barnes, Mayer, et al., 2020; 
Barnes, Toms, et al., 2020; Toms et al., 2020; Zhang et al., 2021).

Although applications of ML interpretation techniques are increasingly commonplace in the geosciences, these 
techniques have the potential to give non-physical and/or misleading results (Ebert-Uphoff & Hilburn, 2020; 
Mamalakis et al., 2022). Typically, the results of ML interpretation methods are deemed trustworthy by visually 
comparing results against prior knowledge. This works well in cases where the processes are well understood 
and a ground-truth comparison is available (Davenport & Diffenbaugh, 2021; Gagne et al., 2019; McGovern 
et al., 2019). However, it remains difficult to validate ML interpretation results when investigating new or poorly 
understood processes. Recently, the construction of synthetic benchmark datasets where the discoverable rela-
tionships are known a priori have been proposed as a way to assess the fidelity of ML interpretation results 
(Ebert-Uphoff & Hilburn, 2020; Mamalakis et al., 2022). Here, we show that by applying ML interpretation 
techniques to modified versions of our training dataset we can validate our results and gain additional insights 
into physical processes.

Partial dependence plots (PDPs; Friedman,  2001) are a common ML interpretation technique which can be 
used to visualize the nonlinear relationships that a model has learned between the input and output variables 
(Goldstein et al., 2015; Jergensen et al., 2019; McGovern et al., 2019). However, PDPs are rarely used to analyze 
deep-learning architectures (such as CNNs) for geoscience applications (Zhang et al., 2021). PDPs are infeasi-
ble for most deep-learning applications (especially those with a large number of inputs) because they require 
an assumption of independence between all input variables (McGovern et al., 2019). If variables are strongly 
correlated, certain combinations of input variables will not likely occur in nature, and the CNN will be forced to 
extrapolate beyond the training dataset in order to calculate the PDP (which can yield non-physical results). Addi-
tionally, in order to apply PDPs to CNNs we must have a physically meaningful way to sort geospatial input maps 
along a continuous axis (which can be difficult depending on the application). In spite of these limitations, PDPs 
show promise as a tool for analyzing CNNs to better understand complex nonlinear relationships within geospa-
tial datasets, provided that the input variables are not too strongly correlated, and that the application is focused 
on quantifying the relationship between the output prediction and some quantity calculated from the input maps.

In this study, we apply partial dependence analysis to investigate daily-scale nonlinear SM-T coupling relation-
ships over 16 midlatitude regions in the Northern and Southern Hemispheres. Over each prediction region, we 
train a CNN to predict daily maximum temperature using several input variables, including atmospheric pressure 
patterns and SM (Figure 1). Next, we use PDPs to visualize how the CNN's temperature prediction changes as 
we vary the SM input (while holding all other inputs constant; Figure 2). The resulting SM-T PDP shows the 
average  sensitivity of the CNN's daily temperature prediction to the SM input. To ensure that these SM-T rela-
tionships are robust, we confirm that each CNN meets minimum performance criteria and compare our SM-T 
PDPs against those obtained from modified versions of our training datasets where we systematically reduce and/
or eliminate the potential for SM-T coupling.

2. Data and Methods
2.1. Datasets

We construct two neural network training datasets which use daily mean 500-hPa geopotential height (GPH) 
anomalies and daily mean surface-layer volumetric SM fraction (SM) anomalies as predictors of regional average 
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daily maximum 2-m air temperature (TMAX) over the 1979–2021 period. We focus on daily TMAX (as opposed 
to daily minimum or daily mean temperature) because the coupling between surface-layer SM and 2-m temper-
ature is most relevant during daylight hours (when SM controls the partitioning of downwelling solar radiation 
into sensible and latent heat fluxes).

Our primary dataset consists of GPH, SM, and TMAX from the ERA5/ERA5-Land historical reanalysis (ERA5, 
Hersbach et al., 2023; ERA5-Land, Muñoz-Sabater, 2019) provided by the European Centre for Medium-Range 
Weather Forecasts and downloaded from the Copernicus Climate Change Service Climate Data Store. We use 
ERA5 hourly 500-hPa geopotential provided globally at 0.25° × 0.25° horizontal resolution. We then divide the 
geopotential by Earth's gravitational acceleration (9.80665 m s −2) to obtain hourly 500-hPa GPH fields in meters 
above mean sea level. We use ERA5-Land hourly 0–7 cm SM fraction and hourly 2-m air temperature provided 
globally at 0.1° × 0.1° horizontal resolution. We then aggregate the ERA5/ERA5-Land hourly fields to obtain 
daily mean GPH, daily mean SM, and daily TMAX. Lastly, we convert the ERA5 GPH and SM fields to a T62 
Gaussian grid at 1.875° × 1.875° horizontal resolution to match the resolution of our comparison dataset, and to 
reduce computational expense.

Our comparison dataset (used in supplemental analysis) consists of GPH, SM, and TMAX from the NCEP/DOE 
Reanalysis II (NCEP; Kanamitsu et al., 2002) historical reanalysis downloaded from the NOAA Physical Science 
Laboratory data archive at https://psl.noaa.gov. Daily mean 0–10 cm SM fraction and daily 2-m TMAX are avail-
able globally on a T62 Gaussian grid at 1.875° × 1.875° horizontal resolution. Using bilinear interpolation, we 
convert the NCEP daily mean 500-hPa GPH fields from a 2.5° × 2.5° rectangular grid to the T62 Gaussian grid 
to match the SM and TMAX fields (regridding performed using NetCDF Operators; Zender, 2008).

Since this analysis focuses on land-atmosphere interactions at daily timescales, we first subtract the 1979–2021 
area-weighted regional-mean linear trends from the GPH, SM, and TMAX fields in both datasets (Cattiaux 
et al., 2013). By subtracting spatially averaged trends, we avoid the impacts of uniform tropospheric thermal 
expansion and near-surface warming on our training datasets, while still preserving the non-uniform spatial 

Figure 1. Schematic of the convolutional neural networks (CNNs) used in this analysis. (a) Model is given the following inputs: 500 mbar geopotential height anomaly 
map, 0–7 cm volumetric soil moisture fraction anomaly map, and an integer input corresponding to the calendar day (normalized to fall between 0 and 1). Pink box 
shows the temperature prediction region. (b) The spatial input maps undergo feature learning as they are passed through a convolutional layer with 8 3 × 3 filters using 
sigmoid activation, followed by an L2 regularization layer (to reduce overfitting), and a 2 × 2 max pooling layer. These three feature learning layers repeat twice. The 
output from the feature learning layers is then flattened, and the normalized calendar day input is concatenated onto the end. The flattened vector is passed through 
a fully-connected dense layer with 32 neurons, L2 regularization, and sigmoid activation. Lastly, we use a linear activation function which outputs (c) the predicted 
maximum near-surface air temperature. (d) The input and output size of each layer in the CNN. (e) Several hyperparameters used to construct and train each model.
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Figure 2. Schematic showing how partial dependence analysis is used to derive the nonlinear soil moisture-temperature (SM-T) coupling relationship that the 
convolutional neural network (CNN) has learned through the training process. Shown is an example from a region in southcentral North America. (1) We take a 
single 500 mbar geopotential height (GPH) map and the calendar day on which that map occurs. (2) We then pair this single GPH/calendar-day combination with 
every possible soil moisture (SM) anomaly input map (in the testing dataset) sorted from driest-wettest (f) according to local SM anomaly (area-weighted average of 
all non-ocean grid cells inside the pink box). (3) We then pass these new input combinations through a trained CNN to obtain daily maximum temperature (TMAX) 
predictions for a single GPH/calendar-day combination over the entire range of SM anomaly maps. (4) We repeat steps (1–3) and average the behavior across all 
summertime GPH/calendar-day combinations (in the 8-year testing dataset) to obtain the nonlinear SM-T coupling relationship (l) that the CNN has learned through 
the training process. The 5 GPH/calendar-day examples (a–e) are chosen for lowest GPH anomaly, median GPH anomaly, highest GPH anomaly, model best-hit, and 
model worst-miss, respectively. The corresponding temperature predictions for these five examples are given in (g–k). The pink marker in (g–k) indicates the actual 
ERA5-Land temperature that occurred on that particular day. The green marker in (g–k) shows the model predicted temperature. The black marker in (g–k) shows the 
average model prediction for SM anomalies near zero, or TMAX(SM = 0). Model predictions for each GPH/calendar-day combination in the testing dataset are shifted 
by TMAX(SM = 0), then averaged to obtain the SM-T relationship in (l). We also include a rug plot showing the distribution of SM anomalies in the training dataset. 
SM anomalies are calculated as standard deviations (S.D.) from the calendar-day mean.
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trends in GPH and SM that are important drivers of regional TMAX (Horton et al., 2015; Swain et al., 2016). For 
both ERA5 and NCEP, we then use the daily mean GPH and SM maps to calculate daily standardized anomalies 
(i.e., z-scores) by subtracting grid-cell calendar-day means and dividing by grid-cell calendar-day standard devi-
ations (S.D.). All missing SM values (non-land grid cells) are assigned a zero anomaly to avoid numerical issues 
with missing values during neural network training.

2.2. Regions

We define 16 prediction regions chosen to encompass a wide range of mid-latitude climate regimes, including 
known land-atmosphere coupling “hot spots” (as proposed by, e.g., Fischer et al., 2007; Koster et al., 2006; Mei 
& Wang, 2012; Seneviratne, Lüthi, et al., 2006). The 16 midlatitude regions (Figure 3) are: northcentral North 
America (38°N–49°N, 86°W–104°W), southcentral North America (21°N–37°N, 92°W–106°W), southeastern 
North America (25°N–37°N, 75°W–92°W), southwestern Europe (36°N–43°N, 10°W–1°E), western Europe 
(43°N–50°N, 5°W–6°E), central Europe (48°N–55°N, 6°E–19°E), eastern Europe (41°N–48°N, 17°E–29°E), 
northeastern Europe (51°N–59°N, 37°E–53°E), northeastern Asia (36°N–48°N, 99°E–121°E), southeastern 
Asia (22°N–33°N, 100°E–122°E), north-southern South America (30°S–41°S, 51°W–73°W), south-southern 
South America (41°S–55°S, 63°W–76°W), southwestern Africa (20°S–35°S, 12°E–25°E), southeastern Africa 
(20°S–35°S, 25°E–36°E), southwestern Australia (25°S–36°S, 112°E–133°E), and southeastern Australia 
(27°S–39°S, 135°E–154°E). The extent of the prediction regions (roughly 800–1100 km across) is determined 
based on the approximate size of mid-latitude weather patterns.

Over each of these prediction regions (Figure 3), we construct neural network training datasets (as detailed in 
Section 2.1). Each regional CNN uses standardized GPH and SM anomaly maps as predictors of regional aver-
age TMAX. We calculate regional average TMAX by taking an area-weighted mean over all non-ocean grid 
cells that fall within the region bounds. In order to provide sufficient spatial context for each regional TMAX 
prediction, we use broad GPH and SM anomaly input maps of 45 longitude points  ×  18 latitude points (at 
1.875° × 1.875° horizontal resolution), centered around the prediction region (see Figure 1 for an example of 
these input maps). Our choice of CNN input size (i.e., 45 longitude points × 18 latitude points) is based on the 
approach of Davenport and Diffenbaugh (2021), who showed that a CNN input map extending 35° latitudinally 
and 85° longitudinally provides sufficient spatial context for classifying GPH patterns associated with extreme 
precipitation over a similarly sized mid-latitude prediction region in the US Midwest.

2.3. Convolutional Neural Network (CNN) Architecture

We train a separate CNN regression model (Figure  1) to predict average daily TMAX over each prediction 
region using daily 500-hPa GPH anomalies, daily surface-layer SM anomalies, and calendar-day inputs. For each 
day in the training set, the neural network receives the calendar day (normalized to fall between 0 and 1) and a 
3-dimensional spatial input matrix (18 × 45 × 2; lat × lon × inputs) containing the GPH map from the day of 
the prediction and the SM anomaly map from 1 day prior to prediction. We use SM inputs from 1 day prior to 
the prediction in order to avoid potential impacts of daily TMAX on daily SM. The spatial inputs then undergo 
feature learning as they are passed through two convolutional layers (8 3 × 3 filters with sigmoid activation) 
each followed by a 2 × 2 max pooling layer. After feature learning, the resulting feature maps are flattened into 
a 1-dimensional vector and the normalized calendar-day input is concatenated to the end. This vector is then 
passed through a fully-connected dense layer (32 neurons with sigmoid activations) followed by a final dense 
layer with linear activations which output a single TMAX prediction. The TMAX predictions are then compared 
to the target TMAX values from the training dataset, and CNN layer weights (initialized with He uniform; He 
et al., 2015) are adjusted using RMSprop (Hinton et al., 2012) in order to minimize the loss function (mean 
squared error; MSE). To reduce overfitting during the training process, we use L2 activity regularization on both 
convolutional layers and the dense layer. We also use early stopping with a patience threshold of 100 epochs 
which halts the training process and returns the optimal weights when validation loss stops improving. After the 
training process is complete, we save the model weights and use the trained model to predict TMAX over all days.

Prior to neural network training, we randomly split the 43-year datasets into training (27-year), validation (8-year), 
and testing (8-year) subsets while keeping calendar years intact. By keeping calendar years intact, we further 
reduce the potential for overfitting between chronologically adjacent days in different subsets which may look 
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nearly identical due to slow day-to-day variations in SM, GPH, and TMAX. Each subset consists of randomly 
selected years (instead of a consecutive N-year period) to avoid potential impacts of interdecadal climate varia-
bility, land use change, anthropogenic climate forcing, and trends in land-atmosphere interactions which could 
otherwise prevent a fair evaluation of our model. We use different training/validation/testing subsets for each 

Figure 3. (a) Northern Hemisphere regions included in this analysis alongside 1979–2021 regional climatologies of (b) daily maximum 2-m temperature (TMAX), 
and (c) volumetric soil moisture fraction (SM). (d, e, and f) Same as (a, b, and c) but for Southern Hemisphere regions. Red shading indicates summer months in each 
hemisphere over which this study analyzes SM-temperature coupling. Gray shading indicates winter months removed from all subsequent analyses. Thin colored lines 
show ±1 standard deviation. TMAX and SM climatologies derived from ERA5-Land dataset.
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region in order to ensure that the target TMAX distributions are roughly equivalent between each subset. To 
avoid potential impacts of snow cover on land-atmosphere coupling (Dutra et al., 2011; Henderson et al., 2018), 
we remove the three canonical winter months in each hemisphere (December–January–February in the Northern 
Hemisphere and June–July–August in the Southern Hemisphere). This yields a total of 7425 training samples, 
2200 validation samples, and 2200 testing samples for each Northern Hemisphere region; and 7378 training 
samples, 2186 validation samples, and 2186 testing samples for each Southern Hemisphere region. During train-
ing, model parameters are fit to the training data and hyperparameters are adjusted to minimize loss on the vali-
dation data. Once the training is complete, we predict TMAX on the unseen testing subset.

We optimize CNN architecture and hyperparameters using scikit-learn's GridSearchCV (Pedregosa 
et  al.,  2011), including: layer number/organization, filter number/size, loss function, optimizer, activation 
functions, weight initializers, and batch size. Additional hyperparameters such as initial learning rate, learning 
rate decay, and L2 activity regularization factor are optimized separately for each regional model in order to 
minimize loss on the validation subset. Due to the non-uniform nature of TMAX distributions, we use the 
DenseWeight/DenseLoss algorithm (Steininger et al., 2021) to perform imbalanced regression by weighting 
the loss function for each sample using weights inversely proportional to sample frequencies (calculated via 
kernel density estimation). The DenseWeight hyperparameter (which controls the degree of weighting) is opti-
mized separately for each regional CNN and substantially improves model performance on extreme TMAX 
days. Although sinusoidal-based positional encoding is commonly used to encode temporal cycles as a CNN 
input variable, this method forces a seasonal symmetry in the input data. Given that a region's seasonal cycle 
of TMAX and SM are not symmetric (e.g., Figure 3), we instead use a normalized calendar-day integer input 
for this prediction task. We use Tensorflow with Keras 2.7.0 (Tensorflow Developers, 2021) to construct and 
train each model.

2.4. Evaluating CNN Performance

Prior to using the regional CNNs to quantify SM-T coupling strength, we must first evaluate whether the CNNs 
are sufficiently accurate to represent SM-T coupling at daily timescales over the respective regions. To that end, 
we first ensure that each CNN meets two criteria: (a) the CNN accurately predicts TMAX at daily timescales, and 
(b) the SM input contributes substantially to overall CNN performance at daily timescales.

To determine if a CNN meets these criteria for a given region, we compare the performance of our CNN against 
two model performance baselines:

1.  Seasonal climatology: comparison between the calendar-day mean TMAX and the actual daily TMAX on 
individual calendar days;

2.  CNN without SM input: performance of a CNN model trained with GPH and calendar-day inputs but no SM 
input maps.

We first compare the performance metrics (e.g., R 2, mean absolute error [MAE], MSE) of our CNNs with those 
of the seasonal-climatology baseline. Any model which outperforms the seasonal-climatology baseline should, 
to some degree, be able to predict daily TMAX anomalies from the seasonal cycle. Then, to justify whether 
the SM input contributes to overall model skill at daily timescales, we compare the performance of our CNNs 
with all input variables against the CNN-without-SM baseline. The difference in skill between these models 
helps to quantify how much the SM input contributes to overall model skill at daily timescales. If the CNN with 
all input variables outperforms the CNN-without-SM baseline, and both of these CNN models outperform the 
seasonal-climatology baseline, then we can more confidently use the full CNN to assess SM-T coupling at daily 
timescales.

2.5. Evaluating Coupling Strength Using Partial Dependence

After training and evaluating our CNNs, we apply partial dependence analysis (Figure 2; Friedman, 2001) to 
visualize the nonlinear relationships between each CNN's summertime TMAX predictions and the average local 
SM anomaly calculated from the SM input maps. Although the training datasets include data from all nine 
non-winter months in each hemisphere, we only assess SM-T coupling over the three canonical summer months 
(when the potential for SM-T coupling is highest; Koster et al., 2006). First, we select a single GPH anomaly map 
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and the corresponding calendar-day input from a summer day in the testing dataset (Figures 2a–2e). Holding this 
GPH and calendar-day input constant, we pair these fixed inputs with every daily SM map (in the testing data-
set) sorted from driest to wettest according to the prediction region's average SM anomaly (area-weighted mean 
over all non-ocean grid cells; Figure 2f). Then, we use each trained CNN to predict TMAX from these newly 
constructed input combinations and visualize the results to assess how the CNN's TMAX prediction depends 
on the average local SM anomaly under daily GPH conditions (Figures 2g–2k). We repeat this process for all 
summer days in the testing dataset (8 years) and compute the two-sided moving average (200 points on either 
side) to obtain the smoothed regional summertime SM-T PDP that the CNN has learned through the training 
process (Figure 2l). Our two-sided moving average is calculated using smaller window sizes near the extreme 
SM anomalies to ensure an equal number of points on each side. We also remove the 10 driest and 10 wettest SM 
anomaly maps (in the testing dataset) from the PDP calculation in order to avoid biasing the results at extreme 
SM anomalies that are underrepresented in the training dataset. Areas of the PDP plot with non-zero SM-T PDP 
slope indicate where the CNN's TMAX prediction is sensitive to the local SM anomaly over the prediction region 
(McGovern et al., 2019). We also use the vertical extent (range) of our SM-T PDPs as a relative indicator of SM-T 
coupling strength.

In order to compare the effects of SM anomalies across different days, we compute PDPs using centered TMAX 
predictions (Goldstein et al., 2015). For each day, we calculate the change in TMAX relative to the model's aver-
age prediction near climatological SM conditions (i.e., TMAX(SM = 0)). We estimate TMAX(SM = 0) each day 
by averaging the closest 200 daily predictions that fall on either side of the calendar-day mean SM anomaly (i.e., 
SM = 0). Estimation of TMAX(SM = 0) is largely insensitive to the choice of window size (i.e., 200 predictions 
on either side).

Because partial dependence analysis also relies on the assumption that all input variables are independent from 
one another (Friedman,  2001), we use SM and GPH calendar-day anomalies to remove seasonal variability. 
However, there still remains the potential for interaction effects between SM and GPH which may cause the CNN 
to learn different SM-T relationships for different GPH inputs. In this case, SM-T PDP curves can be misleading 
since they would average out these divergent SM-T relationships. We address this issue by including density plots 
of daily TMAX predictions alongside the PDPs. From these density plots, we can confirm that the PDPs are not 
averaging out divergent SM-T relationships caused by a violation of the independence assumption between SM 
and GPH inputs (Goldstein et al., 2015).

To assess the fidelity of our PDP-based approach, we apply the PDP method (Figure 2) to modified versions of 
our training datasets (i.e., baseline datasets) in which we have eliminated the potential for SM-T coupling. We 
construct a single baseline dataset by randomly shuffling the 1979–2021 daily SM input maps while leaving the 
GPH and calendar-day inputs untouched. Then, we train a new CNN using this baseline dataset, save the model 
weights, and apply the PDP method to obtain a baseline SM-T relationship. We repeat this process for numerous 
baseline datasets, each created with a different random seed. Randomizing the SM maps removes any statistical 
link between SM inputs and TMAX outputs within these baseline datasets. Therefore, we expect each baseline 
SM-T relationship to have zero slope. Using an approach similar to Buja et al. (2009) and Wickham et al. (2010), 
we then compare the true PDPs against 100 baseline PDPs (each obtained from a different baseline dataset) to 
determine whether the true PDP exhibits a relationship with SM beyond that of random noise.

3. Results
We show TMAX and SM climatologies calculated from the ERA5-Land dataset (1979–2021) for each of the 
sixteen mid-latitude regions (Figure 3). All 16 regions experience their highest temperatures during the summer 
months and lowest temperatures during the winter months (Figures 3b and 3e). However, there are large regional 
differences in the magnitude of the TMAX seasonal cycle, ranging from ±10°C in southwestern Africa and 
southeastern Africa to ±35°C in northeastern Europe and northeastern Asia. Although SM seasonal cycles differ 
substantially between regions, nearly all regions experience their driest SM conditions in the summer months 
(with the exception of northeastern Asia, southeastern Asia, southwestern Africa, and southeastern Africa; 
Figures 3c and 3f). For most regions, we find that the TMAX and SM climatologies also show these patterns 
in the NCEP/DOE Reanalysis II dataset (Figure S5 in Supporting Information S1). (See Methods for additional 
information about region selection.)
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3.1. CNN Model Evaluation

For each region, we compare the performance of our CNN regression models against two model performance base-
lines (detailed in Section  2.4; Figures  4–6). Across all regions, the CNN-without-SM baselines outperform the 
seasonal-climatology baseline (i.e., Figures 4–6b vs. Figures 4–6c), ranging from a minimum root-mean-square error 
(RMSE) reduction of 10.4% in southeastern Asia to a maximum RMSE reduction of 50.7% in southwestern Europe. 
We also find that our CNN models with all input variables (including SM inputs) outperform the CNN-without-SM 
baselines (i.e., Figures 4–6a vs. Figures 4–6b), ranging from a minimum RMSE reduction of 8.1% in northcentral 
North America to a maximum RMSE reduction of 24.8% in southwestern Africa. These improvements in CNN 

Figure 4. Convolutional neural network (CNN) model skill comparison for North and South American regions. (a) Comparison between ERA5-Land TMAX and 
predicted TMAX from CNNs trained with daily geopotential height anomaly maps, soil moisture (SM) anomaly maps, and normalized calendar day inputs. Model 
performance is shown separately for the 27-year training subset (used to fit CNN weights), the 8-year validation subset (used to optimize hyperparameters), and the 
8-year testing subset (unseen data left out of the training process). See Methods for more details on the training, validation, and testing subsets. (b) Same as (a) but for 
CNNs trained without the SM inputs. Model performance is shown for the 8-year testing subset. (c) The seasonal climatology of TMAX as shown by comparing the 
ERA5-Land daily TMAX and the calendar-day mean TMAX each day (averaged over 1979–2021). Each subplot shows the coefficient of determination (R 2), mean 
absolute error (MAE), and the root-mean-square error (RMSE). Correct predictions fall along the 1-1 line (red). Gray dotted lines show ±3°C prediction errors.
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Figure 5. Same as Figure 4, but for regions in Europe and Africa.
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model skill indicate that both GPH inputs and SM inputs each provide unique information that is useful for predict-
ing TMAX at daily timescales. Therefore, we find that all regional CNNs satisfy the necessary criteria (detailed in 
Section 2.4) to confidently use partial dependence analysis to assess daily-scale SM-T coupling. (We further analyze 
each CNN's ability to predict daily TMAX anomalies (0.38 ≤ R 2 ≤ 0.80) as opposed to absolute values, and the TMAX 
seasonal cycle (0.92 ≤ R 2 ≤ 0.99, 0.58°C ≤ RMSE ≤ 1.16°C); Figures S1 and S2 in Supporting Information S1.)

We also find large differences in model performance between regions (Figures  4–6). These differences are 
most obvious between seasonal-climatology baselines, where RMSE ranges from 2.40–3.86°C (south-
eastern Asia-northeastern Europe) and R 2 ranges from 0.34 to 0.88 (southeastern Africa-northeastern Asia; 
Figures 4–6a). These regional differences in model performance can be explained by the statistics of the under-
lying TMAX target data. In general, the skill metrics (R 2, MAE, and RMSE) of the seasonal-climatology base-
line are determined by the magnitude of the region's TMAX seasonal cycle and the standard deviation of the 
daily anomalies about the seasonal cycle. For example, regions with strong TMAX seasonal cycles (northcen-
tral North America, northeastern Europe, and northeastern Asia; Figure 3) exhibit higher R 2 values relative to 
regions with weak TMAX seasonal cycles (southeastern Africa and southwestern Africa). Meanwhile, regions 
with low TMAX S.D. about the seasonal cycle (southeastern Asia, north-southern South America, southeastern 
Africa, and southcentral North America; Figure 3) tend to have lower RMSE than regions with high TMAX 
S.D. about the seasonal cycle (northeastern Europe, northcentral North America, central Europe, and eastern 
Europe).

Figure 6. Same as Figure 4, but for regions in Eastern Asia and Australia.
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3.2. Using Partial Dependence to Investigate SM-T Coupling

After evaluating the performance of each regional CNN (Figures 4–6), we apply the partial dependence analysis 
method (Figure 2) to obtain the ERA5 summertime SM-T relationships for each region (Figure 7). The resulting 
nonlinear SM-T PDPs quantify how the CNN's average TMAX prediction depends on the average SM input, with 
areas of nonzero PDP slope indicating that the prediction is sensitive to the local SM anomaly calculated from 
the SM input map. Across all 16 regions, we find that the SM-T PDPs are negatively sloped across the entire SM 
domain (aside from a positive slope in northcentral North America for wet SM anomalies; Figure 7). This pattern 
indicates that the CNNs tend to predict higher TMAX values when SM conditions are drier, and lower TMAX 
values when SM conditions are wetter.

Despite these overall similarities in the PDP shapes, there are also distinct regional differences in the ERA5 
SM-T relationships (Figure 7). For some regions (e.g., eastern Europe, southeastern North America), we find that 
the slope of the SM-T relationship is relatively constant across the entire range of SM anomalies. Other regions 
exhibit nonlinear SM-T relationships indicating that the CNN has learned a different relationship between the 
SM input map and the TMAX output under different magnitudes of SM anomaly. In many regions, this nonlin-
ear behavior is observed over a large portion of the SM range (e.g., southwestern Australia, northcentral North 
America), while other regions experience nonlinear SM-T behavior only during the most extreme SM conditions 

Figure 7. Soil moisture-temperature (SM-T) relationships obtained through partial dependence analysis of convolutional neural networks (method detailed in Figure 2). 
The smoothed moving average (thick red line) shows the average behavior of the neural network's prediction as the SM input varies from dry (negative) to wet (positive) 
anomalies. Also shown are the moving 5th and 95th percentiles of the temperature predictions (thin red lines). The SM-T relationships shown are calculated from the 
8-year testing dataset. We also include a rug plot showing the distribution of SM anomalies in the 27-year training dataset. For each subplot, we calculate the range 
(vertical extent) of the mean SM-T relationship. Soil moisture anomalies are calculated as standard deviations (S.D.) from the calendar-day mean.

 21698996, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

038365 by C
olorado State U

niversity, W
iley O

nline L
ibrary on [11/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

TROK ET AL.

10.1029/2022JD038365

14 of 22

(e.g., the relatively flat PDP slope in southeastern Australia during extreme wet conditions). To assess the uncer-
tainty associated with each regional SM-T relationship, we visualize the distribution of local SM anomalies in 
the training dataset to identify particular ranges of SM conditions where SM-T relationships may have higher 
uncertainty due to underrepresentation in the training dataset (Figure 7). Additionally, we find that the 5th–95th 
percentile ranges are narrowest near the origin (SM = 0) and become wider near the tails of the SM distribution, 
indicating that the SM-T relationships are more uncertain during extreme SM conditions where there are fewer 
testing samples available.

The vertical extent (range) of these SM-T relationships can be used as a relative measure of regional SM-T coupling 
strength by estimating the overall potential for SM to influence the CNN's TMAX prediction on a typical summer 
day. In North America, we find that southcentral North America has an SM-T coupling strength of approximately 
3.4°C, much higher than both northcentral North America (1.4°C) and southeastern North America (2.7°C). In 
Europe, we find the strongest coupling in eastern Europe (4.0°C) and northeastern Europe (2.8°C), and weaker 
coupling in central Europe (2.5°C), western Europe (2.6°C) and southwestern Europe (2.5°C). Additionally, we 
find that southeastern Asia (4.4°C) has stronger coupling than northeastern Asia  (2.3°C), and north-southern 
South America (3.6°C) has stronger coupling than south-southern South America (1.7°C), whereas southeastern 
Africa (4.2°C) and southwestern Africa (4.4°C) have approximately equal coupling. Finally, southeastern Australia 
(5.1°C) and southwestern Australia (6.7°C) have the strongest overall coupling. (We also show sub-regional varia-
tions in SM-T coupling for southcentral North America; Figure S3 in Supporting Information S1.)

To determine whether each PDP exhibits an SM-T relationship beyond that of random noise, we compare the 
true ERA5 SM-T PDPs (Figure 7) against 100 baseline PDPs calculated from 100 different CNNs trained with 
randomly shuffled SM input maps—each with a different random seed (Figure 8). (For illustration, we show a 
separate example of one of these baseline PDPs along with a density plot of TMAX predictions in Figure S4 in 
Supporting Information S1.) Across the regions, all 100 baseline SM-T PDPs have approximately zero slope over 
the entire SM domain, with no single baseline PDP exhibiting a coupling strength greater than 1.2°C (northeast-
ern Europe). We also find that the vast majority of points along the true regional SM-T PDPs lie far outside the 
range of the baselines. Wet SM anomalies (0.5–1.0 S.D.) in northcentral North America are the only notable 
exceptions for which a substantial portion of the regional PDP falls within the range of the baselines (Figure 8).

We also analyze the sensitivity of regional SM-T relationships to the choice of SM input lag (Figure 9). Specifically, 
we show SM-T PDPs derived from seven different CNNs each trained with different levels of SM input lag. (For 
example, lag = 3 implies that the CNN is trained to predict TMAX using the calendar day and GPH input from the 
prediction day, and the SM anomaly map from 3 days prior to the prediction day.) In general, although the PDP shape 
is similar across input lags, almost all regions experience a monotonic attenuation of SM-T coupling strength (ampli-
tude) as SM input lag increases from 0 to 30 days. This attenuation is expected, based on the autocorrelation times-
cales of top-layer SM. However, the rate of attenuation varies between the regions. For example, over many regions 
(south-southern South America, northcentral North America, northeastern Europe), this attenuation is quite strong 
and SM-T relationships fall within the range of baseline PDPs for SM lags greater than 3 days. For other regions, 
this attenuation is much weaker, and we find SM-T coupling relationships that fall outside the range of baseline 
PDPs at 7-day SM lags (central Europe, northeastern Asia, southwestern Africa), and 14-day SM lags (southcentral 
North America, southeastern North America, eastern Europe, western Europe, southwestern Europe, southeastern 
Asia, southeastern Africa, north-southern South America, southwestern Australia, southeastern Australia). Indeed, 
for extremely dry SM anomalies, some regions exhibit SM-T relationships beyond random noise for SM lags up 
to 30 days (southwestern Australia, southeastern Australia, southeastern Africa, north-southern South America).

We repeat our analysis for all 16 regions using the NCEP/DOE Reanalysis II dataset over the same time period 
(1979–2021) at the same 1.875° × 1.875° horizontal resolution (Figures S5–S11 in Supporting Information S1). 
Despite some notable differences in northcentral North America, the resulting NCEP SM-T relationships are 
consistent with the ERA5 analysis for regional PDP shape (Figure 7 vs. Figure S9 in Supporting Information S1), 
SM-T coupling strengths, comparison with baseline PDPs (Figure 8 vs. Figure S10 in Supporting Information S1), 
and the attenuation of coupling strength with input lag (Figure 9 vs. Figure S11 in Supporting Information S1).

4. Discussion
We use CNNs (Figure 1) to predict daily average TMAX over 16 mid-latitude regions, and apply partial depend-
ence analysis (Friedman, 2001; Figure 2) to investigate regional SM-T coupling relationships using the ERA5 and 
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NCEP reanalysis datasets. Prior to conducting the partial dependence analysis, we first determine whether the 
CNN is sufficiently accurate to represent SM-T coupling at daily timescales. This is especially important since 
CNN model skill metrics vary widely between regions (Figures 4–6). As described in the Methods, we evaluate 
the regional CNNs to confirm that each CNN predicts daily TMAX anomalies from the seasonal cycle, and that 
the SM input contributes to overall CNN performance at daily timescales. After careful model evaluation, we 
find  that all regional CNNs satisfy these criteria (Figures 4–6).

We also find that overall model performance is closely tied to the statistics of the underlying TMAX target data. 
For instance, a simple model which predicts the calendar-day mean TMAX each day has high R 2 and low MSE 
when asked to predict over a region characterized by a strong TMAX seasonal cycle with low variance about 
the seasonal cycle (e.g., southeastern Asia seasonal-climatology baseline model; Figure 6). Despite good perfor-
mance metrics, this same model is not suitable for partial dependence analysis of daily-scale SM-T coupling 
because it fails to predict daily TMAX anomalies from the seasonal cycle. As a result, we stress the importance 
of thoroughly evaluating the CNN model skill (as suggested in Section 2.3) to assess performance at various 
timescales (Figures S1 and S2 in Supporting Information S1). Furthermore, we suggest the use of multiple CNNs 
with different input combinations to verify that each input variable contributes to overall model performance at 
the desired timescale (Figures 4–6). The results of these verification tests provide confidence in using the regional 
CNNs to quantify daily-scale SM-T coupling via partial dependence analysis (Figure 2).

Figure 8. Regional soil moisture-temperature (SM-T) relationships obtained through partial dependence analysis (method detailed in Figure 2) of convolutional neural 
networks (CNNs) trained to predict regional daily maximum temperature (TMAX) given geopotential height, calendar-day, and SM inputs. Each regional subplot 
shows 101 SM-T partial dependence plots (PDPs), consisting of the true SM-T PDP (red; Figure 7) and 100 baseline SM-T PDPs (black) derived from CNNs trained 
with shuffled SM inputs (each shuffled using a different random seed). Also shown are the moving 5th and 95th percentiles of the true SM-T PDP (thin red lines). SM 
anomalies are calculated as standard deviations (S.D.) from the calendar-day mean.
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Our SM-T PDPs show that the CNN TMAX predictions are sensitive to the local SM anomaly over the predic-
tion region (Figure 7 and Figure S9 in Supporting Information S1). Additionally, the SM-T PDPs are negatively 
sloped and roughly monotonic (aside from wet SM anomalies in northcentral North America), with each CNN 
predicting warmer temperatures associated with dry SM anomalies and cooler temperatures associated with wet 
SM anomalies. The general shapes of these SM-T PDPs (Figure 7 and Figure S9 in Supporting Information S1) 
are consistent with the well-understood land-atmosphere interactions through which SM conditions modulate 
the local surface energy budget and influence near-surface temperatures (Alfaro et al., 2006; Dirmeyer, 2011; J. 
Liu & Pu, 2019; Seneviratne et al., 2010). Previous studies rely on linear statistical methods (such as the corre-
lation between evapotranspiration and temperature) to assess regional differences in land-atmosphere coupling 
strength (Dirmeyer, 2011; Jaeger et al., 2009; Koster et al., 2004, 2006, 2009; Miralles et al., 2012; Seneviratne, 
Lüthi, et  al., 2006; Teuling et  al., 2009). While these linear methods are well-suited for quantifying regional 
differences in coupling strength, evidence from climate models and observations suggest that the actual influence 
of SM on temperature is nonlinear (Benson & Dirmeyer, 2021; Fischer et al., 2007; Jaeger & Seneviratne, 2011; 
Schwingshackl et al., 2017; Seneviratne et al., 2010).

To allow for the potential of these nonlinear SM-T relationships, our method uses CNN ML models to quantify 
the sensitivity of TMAX to SM across a range of different SM values. We find that the SM-T relationships 

Figure 9. Regional soil moisture-temperature (SM-T) relationships obtained using the method detailed in Figure 2 (but for convolutional neural networks [CNNs] 
trained with various levels of SM input lag). Each regional subplot shows SM-T relationships derived from seven different CNNs trained to predict daily maximum 
near-surface air temperature (TMAX) given the following inputs: calendar day, daily geopotential height anomaly map, and a single day's SM anomaly map lagged by 
0–30 days prior to the prediction day. After the training process, CNN weights are saved and used to calculate the SM-T partial dependence plots (PDPs) as in Figure 2. 
Colors show SM-T relationships for CNNs trained with SM input lags of 0, 1, 2, 3, 7, 14, and 30 days. Hatching shows the range of 100 baseline PDPs trained with 
shuffled SM maps (Figure 8). SM anomalies are calculated as standard deviations (S.D.) from the calendar-day mean.
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derived from partial dependence analysis (Figure  2) are approximately linear for some regions (e.g., eastern 
Europe, southeastern North America) and nonlinear for other regions (e.g., southwestern Australia, northcentral 
North America, southeastern Australia) (Figure 7). These results suggest that the land-atmosphere interactions 
that couple daily SM conditions and near-surface TMAX vary under different ranges of SM anomaly, but these 
variations are regionally dependent. When evaluating these SM-T relationships, it is important to consider that 
the PDP behavior is most uncertain at the tails of the SM distribution where the 5th–95th percentile ranges are 
widest and where the underrepresentation of extreme SM anomalies in the training dataset limits the CNNs abil-
ity to learn the relationship between SM and TMAX.

In order to compare our results more directly with previous assessments of SM-T coupling, we use the verti-
cal extent (range) of our SM-T PDPs (Figure 7) as a relative indicator of SM-T coupling strength. Using this 
metric, we find much stronger JJA SM-T coupling in southcentral North America compared to northcentral North 
America and southeastern North America. This agrees with previous assessments of land-atmosphere coupling 
strength using climate models (Koster et al., 2006, 2009; Seneviratne, Lüthi, et al., 2006) and observational data-
sets (Dirmeyer, 2011; Miralles et al., 2012). These results are also consistent with Schwingshackl et al. (2017) 
and Teuling et al. (2009), who used observational and reanalysis datasets, respectively, to classify southcentral 
North America and northcentral North America as regions with a high potential for strong SM-T coupling and 
southeastern North America as a region with little potential for SM-T coupling.

In Europe, we find that our northeastern Europe and eastern Europe regions have the strongest PDP-based SM-T 
coupling strength, while our central Europe, western Europe, and southwestern Europe regions have the weak-
est (Figure  7). This hierarchy of coupling strength in Europe is consistent with Fischer et  al.  (2007), whose 
regional climate model experiments identified the strongest 2003 JJA SM-T coupling in eastern Europe (followed 
by central Europe and western Europe), and the weakest coupling in southwestern Europe (with northeastern 
Europe not considered in their domain). Jaeger et al. (2009) and Seneviratne, Lüthi, et al., 2006 also found strong 
JJA SM-T coupling in eastern Europe and northeastern Europe, with weaker coupling in western Europe and 
central Europe. Our results are also consistent with Teuling et al. (2009) who found the potential for strong SM-T 
coupling in eastern Europe and northeastern Europe. However, numerous previous studies (Dirmeyer,  2011; 
Jaeger et al., 2009; Miralles et al., 2012; Seneviratne, Lüthi, et al., 2006; Teuling et al., 2009) all identified strong 
SM-T coupling over southwestern Europe, in contrast to our PDP-based results (although Seneviratne, Lüthi, 
et al., 2006, warn that certain coupling metrics, like the correlation of evapotranspiration and 2-m temperature, 
may not be meaningful in regions with small evapotranspiration like southwestern Europe).

In the Southern Hemisphere, our PDP-based SM-T coupling strengths show weak coupling in south-southern 
South America, and strong coupling in north-southern South America, southwestern Africa, southeastern Africa, 
southwestern Australia, and southeastern Australia (Figure 7). These PDP-based coupling strengths are remarka-
bly consistent with Dirmeyer (2011), who analyzed coupling between latent heat flux and SM to identify regions 
with strong SM-T coupling potential. Our results are also consistent with Schwingshackl et al. (2017), who iden-
tified south-southern South America as a wet SM regime during DJF, and all other regions (north-southern South 
America, southwestern Africa, southeastern Africa, southwestern Australia, and southeastern Australia) as tran-
sitional SM regimes. In South America, Miralles et al. (2012) found approximately equal coupling across central 
and south-southern South America, although numerous other studies (e.g., Baker et al., 2021; Dirmeyer, 2011; 
Menéndez et al., 2019; Ruscica et al., 2014; Spennemann et al., 2018) report that land-atmosphere coupling is 
much stronger in north-southern South America compared to south-southern South America. The results of 
Miralles et al. (2012) also support our conclusion that SM-T coupling is much stronger in Africa and Australia 
compared to South America.

The most notable differences between our results and previous assessments of regional SM-T coupling strengths 
occur in eastern Asia. Using both the ERA5 and NCEP datasets, we find substantially stronger PDP-based 
SM-T coupling in our southeastern Asia region compared to our northeastern Asia region (Figure 7 and Figure 
S9 in Supporting Information S1, respectively). Previous studies report roughly equal (Koster et al., 2006) or 
substantially stronger coupling in northeastern Asia (Dirmeyer, 2011; Koster et al., 2009; Miralles et al., 2012; 
Schwingshackl et al., 2017; Seneviratne, Lüthi, et al., 2006; Teuling et al., 2009), which conflicts with our ERA5 
and NCEP results.

We extend our partial dependence analysis to modified versions of our training dataset, which yields additional 
insights into the timescale of SM memory within the SM-T relationship. We find a monotonic attenuation of 
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PDP-based coupling strength with increasing SM input lag (Figure 9). The overall reduction in SM-T coupling 
strength is likely a consequence of limited SM memory as the SM input becomes less physically relevant to 
actual conditions on the prediction day. Our results also agree with previous studies which suggest that wet SM 
anomalies decay faster than dry SM anomalies (Orth & Seneviratne, 2012; Song et al., 2019), resulting in longer 
SM memory for extreme dry conditions (Orth & Seneviratne, 2012). Specifically, we find that in 12 of the 16 
regions, the SM-T relationship remains outside the range of random noise at longer lags for dry anomalies than 
for wet anomalies (Figure 9). In addition, we find regional differences in the timescale of decay in PDP-based 
coupling strength as SM input lag increases (Figure 9). For example, southeastern Africa (among other regions) 
exhibits an SM-T relationship beyond random noise at SM lags up to 14 days. However, SM-T relationships in 
south-southern South America, northcentral North America, and northeastern Europe fall within the range of 
random noise beyond 3-day SM lags. These regional differences in PDP attenuation agree reasonably well with 
Seneviratne, Koster, et al. (2006), who found long SM memories across southern Africa, Australia, Europe, North 
America, and north-southern South America, but substantially shorter SM memory in northeastern Asia and 
south-southern South America. Seneviratne, Koster, et al. (2006) also found long SM memory in southeastern 
Asia which conflicts with our ERA5 and NCEP results. Overall, these results suggest that incorporating addi-
tional temporal SM information from 7-, 14-, or even 30-days prior to the TMAX prediction could improve the 
CNN's ability to predict TMAX.

Our analysis focuses specifically on SM-T coupling over midlatitude regions; however, the physical processes 
that regulate SM-T interactions may be different in tropical and high-latitude regions. Therefore, though the flex-
ibility of our ML-based framework makes it deployable to other regions, we do not claim that this technique can 
be applied to other areas of the globe (such as in the tropics or high latitudes) without further investigation. We 
also acknowledge that there may exist different configurations of ML model (e.g., long short-term memory 
network), hyperparameters, and input variables that are able to achieve better performance than the CNNs used 
in this study. Regardless, our results show that these CNNs capture SM-T relationships that broadly agree with 
previous assessments of SM-T coupling. We also recognize that our regional assessment of SM-T coupling fails 
to capture fine-scale spatial differences in coupling found in previous studies (e.g., Koster et al., 2006; Miralles 
et al., 2012). However, our framework could be readily extended to assess coupling at finer spatial resolutions by 
calculating SM-T relationships over smaller subregions (Figure S3 in Supporting Information S1) and/or using 
input data with finer spatial resolution. Though we focus specifically on the relationship between surface-layer 
SM and TMAX (which is most relevant for daily-scale SM-T coupling), our analysis could also be modified to 
assess coupling between numerous other land-surface and atmospheric variables (e.g., coupling between latent 
heat flux and daily mean temperature, or coupling between evapotranspiration and precipitation).

Although our PDPs quantify the average impact of local SM conditions on the CNN's TMAX prediction, there 
may be other processes correlated with SM conditions whose effect on temperature is incorrectly attributed to 
SM. One way to address this would be to repeat this analysis using a different land-surface variable in place of 
SM (e.g., latent heat flux or evapotranspiration) and compare the corresponding coupling relationships with 
temperature. Another approach would be to include additional atmospheric and land-surface variables as CNN 
inputs and hold them constant during the PDP calculation to isolate the effect of SM alone on temperature. 
However, adding additional variables would run the risk of violating the independence assumption between input 
variables. Indeed, although we use standardized calendar-day anomalies for SM and GPH inputs to avoid seasonal 
dependencies with the calendar-day inputs, a side effect is that our PDPs are calculated in terms of standardized 
SM anomalies instead of the raw SM fraction values. Since each SM grid cell's calendar-day mean and stand-
ard deviation fluctuates throughout the summer, we cannot convert SM anomalies directly back to SM fraction 
values, which prevents us from being able to compare the magnitude of the PDP slope directly between regions.

Finally, like all SM-T coupling assessments, our results are also dataset-dependent. Although it represents an 
improvement over the land component of previous reanalyzes, the ERA5-Land surface-layer SM dataset used 
in this analysis has a known wet-bias and exhibits regional differences in agreement (i.e., correlation) when 
compared to 5-cm in situ observations of SM across Europe, North America, and Australia (Muñoz-Sabater 
et al., 2021). As a result, the SM-T relationships presented here may be more representative of the real world in 
regions where the ERA5-Land SM closely matches observations, and less representative in regions where the 
ERA5-Land SM has higher uncertainty. Regardless, while the results presented here are limited to the datasets 
that were analyzed, our framework could easily be extended to quantify SM-T relationships using a wide range of 
datasets from climate models, reanalyses, remote sensing, and/or gridded observations.
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5. Conclusions
We present a new approach for quantifying SM-T coupling which uses convolutional neural network (CNN) 
ML models and PDPs to visualize nonlinear SM-T relationships over 16 mid-latitude regions in the Northern 
and Southern Hemispheres. From these regional SM-T relationships, we find that the CNNs predict warmer 
temperatures when the soils are dry and cooler temperatures when the soils are wet, which is consistent with 
well-understood land-atmosphere interactions in the midlatitudes. We also find that our relative measure of SM-T 
coupling strength broadly agrees with previous assessments of regional SM-T coupling. Though our approach is 
designed to allow for the potential of nonlinear SM-T relationships, we find that the SM-T PDPs are approximately 
linear over several regions, such as eastern Europe and southeastern North America. That said, other regions 
exhibit pronounced nonlinear behavior across a large portion of the SM range (e.g., southwestern Australia, 
northcentral North America). This nonlinearity suggests that the coupled interactions governing the SM-T rela-
tionship vary under different SM conditions, but these variations are regionally dependent. Taken together, our 
results show that PDPs can be combined with CNNs to create a powerful tool for quantifying nonlinear SM-T 
coupling relationships.

In particular, we find that applying ML interpretation and visualization techniques (i.e., PDPs) to modified 
versions of our training datasets can yield new insights into physical processes, such as the nonlinear charac-
teristics of SM memory, which is a vital component of long-term SM-T coupling. For example, in accordance 
with previous studies, we find that SM memory fades monotonically over time, and that wet SM anomalies fade 
faster than dry anomalies. More research is required to understand the full potential for PDPs to reveal regional 
differences in the nonlinear properties of SM memory, with implications for seasonal forecasting of temperature 
and precipitation.

Partial dependence analysis has only recently been applied to CNNs for geoscience applications. However, we 
suggest that many complex climate processes have the potential to be studied by analyzing CNNs with PDPs as 
long as enough high-quality training data are available. For example, given sufficient training data, our analysis 
could be extended to investigate climate-driven changes in SM-temperature and SM-precipitation coupling at 
daily and seasonal timescales using climate model simulations under historic and future climate change scenar-
ios. Likewise, CNNs with PDPs could be used to explore non-local coupling relationships between land, ocean, 
and atmospheric conditions, which can improve our understanding of complex climate processes such as the El 
Nino Southern Oscillation. More generally, our results show that PDPs can be an effective tool for quantifying 
nonlinear coupling relationships between the CNN's output prediction and quantities calculated from the input 
maps. We emphasize that, for each of these potential applications, even if the training data appears to be adequate, 
each CNN model must be thoroughly evaluated to ensure that the model is trustworthy and is representative of 
physical processes in the real world.

Coupled interactions in the Earth system are important drivers of climate variability and extreme weather events, 
but many of these coupled processes are still not fully understood. Based on our results, partial dependence anal-
ysis is a promising pathway for using CNNs to investigate these nonlinear coupled interactions, with important 
implications for model development, model parameterization, and seasonal forecasting.

Data Availability Statement
The hourly ERA5 (Hersbach et al., 2023) and ERA5-Land (Muñoz-Sabater, 2019) data are available from the 
Copernicus Climate Change Service Climate Data Store and can be accessed from their website at https://cds.
climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels and https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-land, respectively. The daily mean NCEP/DOE Reanalysis II data (Kanamitsu 
et al., 2002) provided by the NOAA PSL, Boulder, Colorado, USA, is available from their website at https://psl.
noaa.gov/data/gridded/data.ncep.reanalysis2.html. Analysis code is available in a Zenodo archive (https://doi.
org/10.5281/zenodo.8041886).
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