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ABSTRACT: An emergent constraint (EC) is a statistical relationship, across a model ensemble, between a measurable

aspect of the present-day climate (the predictor) and an aspect of future projected climate change (the predictand). If such a

relationship is robust and understood, it may provide constrained projections for the real world. Here, models from phase 6

of the Coupled Model Intercomparison Project (CMIP6) are used to revisit several ECs that were proposed in prior model

intercomparisons with two aims: 1) to assess whether these ECs survive the partial out-of-sample test of CMIP6 and 2) to

more rigorously quantify the constrained projected change than previous studies. To achieve the latter, methods are pro-

posed whereby uncertainties can be appropriately accounted for, including the influence of internal variability, uncertainty

on the linear relationship, and the uncertainty associated with model structural differences, aside from those described by

the EC. Both least squares regression and a Bayesian hierarchical model are used. Three ECs are assessed: (i) the rela-

tionship between Southern Hemisphere jet latitude and projected jet shift, which is found to be a robust and quantitatively

useful constraint on future projections; (ii) the relationship between stationary wave amplitude in the Pacific–North

American sector and meridional wind changes over North America (with extensions to hydroclimate), which is found to be

robust but improvements in the predictor in CMIP6 result in it no longer substantially constraining projected change in

either circulation or hydroclimate; and (iii) the relationship between ENSO teleconnections to California and California

precipitation change, which does not appear to be robust when using historical ENSO teleconnections as the predictor.
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1. Introduction

As we grapple to predict the future of the climate system,

there are three sources of uncertainty we must contend with:

scenario uncertainty, internal variability, and model response

uncertainty (Hawkins and Sutton 2009; Lehner et al. 2020).

Scenario uncertainty arises because we do not know exactly

how anthropogenic forcings will evolve in the future and is

dealt with by considering a range of future forcing scenarios

that span the range of possible societal outcomes (e.g., O’Neill

et al. 2013). Internal variability arises because the Earth system

internally generates its own variability and, as our singular

climate system evolves, the climate state we experience will

be a combined result of both anthropogenically forced change

and this internal variability (e.g., Deser et al. 2012). For themost

part, this source of uncertainty is irreducible, but can neverthe-

less be quantified; it is a certain uncertainty (Deser 2020).

Finally, model response uncertainty arises because we are at-

tempting to predict the future with imperfect models. While

model development and enhanced computing capabilities are

continually aimed at reducing this uncertainty, we must, at the

same time, come up with creative ways of either interpreting

model response uncertainty (Shepherd et al. 2018) or reducing

it (Hall et al. 2019).

‘‘Emergent constraints’’ (ECs) are a potential way to reduce

model response uncertainty (Hall et al. 2019; Brient 2020).

These are statistical relationships between the modeled rep-

resentation of a measurable aspect of the present-day climate

(the predictor) and some aspect of future projected change

(the predictand), with the expectation that the predictor and

predictand are linked somehow in a physically meaningful way.

Most commonly, these constraints ‘‘emerge’’ from multi-

model ensembles such as the Coupled Model Intercomparison

Project (CMIP; Taylor et al. 2012; Eyring et al. 2016) but they

can also be found, or tested, in perturbed physics ensembles

with an individual model (Kamae et al. 2016; Wagman and

Jackson 2018).

Since the potential of ECs was brought to the fore by Hall

and Qu (2006) in their analysis of snow-albedo feedbacks,

they have been applied to climate sensitivity and cloud feed-

backs (Caldwell et al. 2018, and references therein), carbon
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cycle feedbacks (Cox et al. 2013; Wenzel et al. 2014), ocean

productivity (Kwiatkowski et al. 2017), sea ice loss (Boé et al.

2009; Massonnet et al. 2012), and aspects of the large-scale cir-

culation and hydroclimate (Kidston andGerber 2010; O’Gorman

2012; Simpson and Polvani 2016; Simpson et al. 2016; Li et al.

2017; Lehner et al. 2019; Chen et al. 2020).

As embodied in the views of two recent perspective articles

(Hall et al. 2019; Brient 2020), great care must be taken in

assessing the validity and usefulness of an EC, since spurious

significant relationships can be found within multimodel en-

sembles, purely by chance (Caldwell et al. 2014). Hall et al.

(2019) put forth a framework whereby a proposed EC, based

on a strong statistical relationship, can become verified. This

involves accompanying the EC with a plausible physical

mechanism, verifying that this mechanism is at work in the

model ensemble, and assessing whether the EC survives out-

of-sample testing. Ensuring that a relationship survives out-of-

sample testing using another ensemble or, alternatively, using

dedicated sensitivity experiments within a single model (e.g.,

van Niekerk et al. 2017) helps to establish that the relationship

is robust and is indeed indicative of a true underlying physical

relationship between predictor and predictand. Brient (2020)

also discusses the importance of accounting for the many

uncertainties involved when quantifying constrained future

projections.

Prior EC studies address this issue of the quantification of

future projected change with varying degrees of rigor. Many

studies stop short of providing a quantitative estimate for the

future and, instead, simply point out the constraining rela-

tionship and discuss how the observed predictor compares to

the model distribution to draw qualitative conclusions (Hall

and Qu 2006; Trenberth and Fasullo 2010; Fasullo and Trenberth

2012; Su et al. 2014; Tian 2015; Simpson and Polvani 2016; Lipat

et al. 2017). Others are more quantitative by using a linear

regression combined with the observed value of the predictor

to project the future, but often without, or only a partial,

consideration of the uncertainties involved (Volodin 2008;

Sherwood et al. 2014). Some do account for uncertainty in the

regression coefficients (Huber et al. 2010; O’Gorman 2012;

Simpson et al. 2016) but neglect other potential sources of

model spread that are not described by the EC, while others

quantify the uncertainty based on the residuals from the linear

regression fit, which may be a more encompassing approach

(Bracegirdle and Stephenson 2013; Cox et al. 2013), although

Bowman et al. (2018) highlight the importance of also incor-

porating observational uncertainty. Brient (2020) provides a

clear example where failure to adequately account for uncer-

tainties can lead to overly constrained projections and, instead,

opts to use a model weighting procedure to provide a con-

strained distribution of future projected change—an approach that

has been implemented by a number of other studies with varying

degrees of sophistication (Hargreaves et al. 2012; Massonnet et al.

2012; Zhai et al. 2015).

Here, we revisit three ECs that relate to the large-scale at-

mospheric circulation and regional hydroclimate with two

primary goals. The first is to assess whether these constraints,

which were previously found in CMIP5 models, still exist in

CMIP6. While CMIP6 compared to CMIP5 may not be a

completely out-of-sample test, passing this test will improve

confidence that the EC is real and move it along the path

toward the confirmed category (Hall et al. 2019). Our second

goal is to more rigorously quantify the extent to which these

constraints can actually constrain future projections, by pro-

posing a new approach to adequately incorporate the variety

of uncertainties that are involved in the calculation. This ap-

proach involves linear regression, using either least squares

regression or a Bayesian hierarchical model, combined with

sampling from large ensembles from multiple models, to

quantify the constrained future change via the EC.

The three ECs to be assessed are 1) the relationship between

the climatological latitude and future projected poleward shift

of the Southern Hemisphere (SH) jet stream (Kidston and

Gerber 2010; Simpson and Polvani 2016), hereafter referred to

as the SHJET constraint; 2) the relationship between the cli-

matological amplitude of intermediate scale stationary waves

in the Pacific–North American sector and future projected

meridional wind change over NorthAmerica, with extension to

North American hydroclimate (Simpson et al. 2016), hereafter

referred to as the VWIND constraint; and 3) the relation-

ship between a model’s representation of El Niño–Southern
Oscillation (ENSO) teleconnections to California precipitation

and future projected California precipitation change (Allen and

Luptowitz 2017), hereafter referred to as the CALP constraint.

Section 2 describes the model and observation-based data-

sets used and methods are outlined in section 3. The SHJET,

VWIND, and CALP constraints are then assessed in sections 4,

5, and 6, respectively. Discussion is provided in section 7 fol-

lowed by conclusions in section 8.

2. Model and observation-based data

Monthly zonal wind (U), meridional wind (V), precipitation

(pr), surface temperature (Ts) and surface air temperature

(T2m) data from the CMIP5 and CMIP6 models summarized in

Table 1 are used, after interpolating fields to a common 18 grid
using bilinear interpolation. For the SHJET and VWIND

constraint, we take the ‘‘past’’ to be the period 1979–2014

under the ‘‘historical’’ forcing scenario (CMIP5 historical

members are combined with the corresponding RCP8.5 member

to extend the historical period out to 2014). We take the ‘‘future’’

to be 2070–99 of the RCP8.5 scenario in CMIP5 (Meinshausen

et al. 2011; Lamarque et al. 2011) and the SSP5-8.5 scenario in

CMIP6 (Kriegler et al. 2017)—that is, using the forcing sce-

nario in each CMIP that reaches;8.5Wm22 radiative forcing

by the end of the century. For the CALP constraint, the linear

trend in precipitation between 2006 and 2099 is considered,

while both the 2006–99 and 1948–2014 periods are used to as-

sess the representation of ENSO teleconnections.

To quantify the influence of internal variability on uncer-

tainty in both the predictor and predictand, we use initial

condition large ensembles (LEs) from five models run under

the RCP8.5 scenario: CanESM2, 50 members; CESM1-CAM5,

40 members; CSIRO-Mk3.6.0, 30 members; GFDL-CM3,

20 members; and MPI-ESM, 100 members (Deser et al. 2020).

For observed U and V we use ERA5 (Hersbach et al. 2020),

ERA-Interim (Dee et al. 2011),MERRA2 (Gelaro et al. 2017),
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and JRA-55 (Kobayashi et al. 2015) reanalyses. For Ts over

ocean we useHadISST (Rayner et al. 2003), ERSSTv3b (Smith

et al. 2008), and ERSSTv5 (Huang et al. 2017), and for pr we

use CRUTS (Harris et al. 2014) and GPCC (Schneider 2018)

station-based observations.

3. Emergent constraints methodology

The essence of an EC is a relationship (typically linear)

between a model’s representation of a present-day quantity (x)

and its projected future change (D) in a quantity (y). Using a

linear fit:

Dy(i)5a1bx(i)1 �(i) , (1)

where a and b are the regression coefficients, «(i) are the re-

siduals of the fit, and i refers to individual model data points

(i 5 1, . . . , N) after averaging over the ensemble members

available (see the schematic example in Fig. 1a). Themeasured

(x,Dy) for a givenmodel may differ from the true (x,Dy) due to
internal variability given the limited ensemble size for each

model.Wewill use ( . ) throughout to refer to the ‘‘true’’ values,

absent internal variability. The residuals («) will have a com-

ponent that results from internal variability («IV) and a compo-

nent that arises from other intermodel differences in Dy that are
not described by the emergent constraint, which we will refer to

as d. If the effects of internal variability could be neglected, then

Dy(i)5a1bx(i)1 d(i) . (2)

TABLE 1. A summary of the CMIP5 andCMIP6models and number of ensemblemembers used; hist refers to the historical simulations,

8.5 refers to the forcing scenario that results in 8.5Wm22 radiative forcing by the end of the century (RCP8.5 for CMIP5 and SSP5-8.5 for

CMIP6). Superscripts from 1 to 22 indicate the 22 CMIP5 and CMIP6models that are considered to be predecessors and successors to test

the independence of CMIP5 and CMIP6. (Expansions of most model names are available online at http://www.ametsoc.org/

PubsAcronymList.)

CMIP5 CMIP6

Name hist 8.5 Name hist 8.5

ACCESS1.0 1 1 ACCESS-CM21 2 1

ACCESS1.31 1 1 ACCESS-ESM1-5 3 3

BCC-CSM1.1 1 1 AWI-CM-1-1-MR 5 1

BCC-CSM1.1-m2 1 1 BCC-CSM2-MR2 3 1

BNU-ESM 1 1 CAMS-CSM1-0 1 2

CanESM23 5 5 CanESM53 25 25

CCSM4 6 6 CanESM5-CanOE 3 3

CESM1-BGC 1 1 CESM24 10 2

CESM1-CAM54 3 3 CESM2-WACCM5 3 1

CESM1-WACCM5 1 1 CIESM 3 1

CMCC-CM 1 1 CMCC-CM2-SR56 1 1

CMCC-CMS6 1 1 CNRM-CM6-17 15 6

CNRM-CM57 5 5 CNRM-CM6-1-HR 1 1

CSIRO-Mk3.6.0 10 10 CNRM-ESM2-1 5 5

EC-EARTH8 1 1 EC-Earth38 10 7

FGOALS-g29 1 1 EC-Earth3-Veg 4 3

FIO-ESM10 3 3 FGOALS-f3-L 3 1

GFDL-CM311 1 1 FGOALS-g39 3 1

GFDL-ESM2G 1 1 FIO-ESM-2-010 3 3

GFDL-ESM2M12 1 1 GFDL-CM411 1 1

GISS-E2-H 2 2 GFDL-ESM412 1 1

GISS-E2-R13 2 2 GISS-E2-1-G13 10 1

HadGEM2-AO 1 1 HadGEM3-GC31-LL14 4 3

HadGEM2-CC 3 3 HadGEM3-GC31-MM 4 3

HadGEM2-ES14 3 3 INM-CM4-8 1 1

INM-CM415 1 1 INM-CM5-015 8 1

IPSL-CM5A-LR16 4 4 IPSL-CM6A-LR16 32 1

IPSL-CM5A-MR 1 1 KACE-1-0-G 3 1

IPSL-CM5B-LR 1 1 MCM-UA-1-0 1 1

MIROC517 3 3 MIROC617 10 3

MIROC-ESM18 1 1 MIROC-ES2L18 3 1

MIROC-ESM-CHEM 1 1 MPI-ESM1-2-HR20 10 1

MPI-ESM-LR19 3 3 MPI-ESM1-2-LR19 10 1

MPI-ESM-MR20 1 1 MRI-ESM2-021 5 1

MRI-CGCM321 1 1 NESM3 5 2

NorESM1-M 1 1 NorESM2-LM22 3 1

NorESM1-ME22 1 1 NorESM2-MM 1 1

UKESM1-0-LL 4 5
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The variance in modeled Dy values, s2(Dy), can be partitioned

into a component that is explained by the EC (s2
EC) and the

remainder (s2
� ). The term s2

� then consists of components due

to internal variability (s2
IV) and other intermodel differences

that are not explained by the EC (s2
d); that is,

s2(Dy)5s2
EC 1s2

IV 1s2
d , (3)

where we have assumed «, d, and «IV are normally distributed

such that �;N (0, s2
� ), d;N (0, s2

d) and �IV ;N (0, s2
IV).

Combining the EC (1) with the observed value of x for the real

world [xE, with (.)E referring to Earth], the future change for

the real world (DyE) can be predicted via

Dy
E
5a1bx

E
1 �

IV
1 d . (4)

The first two terms on the right refer to the component pre-

dicted by the EC, the third term represents the Dy that could

arise due to internal variability in one realization, and the final

term refers to the other contributions to the forced change in

the real world that are not explained by the EC.

Each component on the right of (4) is uncertain. With only a

finite number of models, with finite ensemble sizes, a and b are

not known exactly; also, xE may deviate from xE due to ob-

servational error and internal variability (Fig. 1b), «IV is an ir-

reducible uncertainty, and we may not know the role of other

forced responses in the real world, not described by the EC (d),

although this uncertainty has the potential to be reduced

through additional emergent constraints as they are discov-

ered. A further assumption is made that the process repre-

sentation within the models is close enough to that of the real

FIG. 1. Illustrative depiction of the EC method using synthetic data. (a) The relationship

between the projected change (Dy) and the present day climatology (x) for the models

depicted by the red points. Gray crosshairs depict the uncertainty on each red point by

the 61.96s range. Black vertical lines show four different measurements of xE while the

brown, green, and purple dashed lines show the best fitting linear regression line using the

OLS, TLS, and BHMmethods. (b) The distribution of possible true values of the real world

climatology xE given by PDFs that reflect the uncertainty due to internal variability, centered

on each observed value. (c) The probability distributions of the real world change along with

its mean (horizontal lines) and the 95% confidence interval (vertical ranges) for eachmethod.

This PDF considers the uncertainty in the best fitting regression line, the uncertainty in the

true real world value of x, and the potential influence of internal variability and other aspects

of the forced response not explained by the EC, using the method outlined in section 3.
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world, that the real world Dy will depend on x in a similar way

(Williamson and Sansom 2019).

While we cannot know the true values of any of the uncertain

parameters, we can model them as probability distribution func-

tions (PDFs), based on the information we have, to determine a

PDF forDyE (depicted schematically in Fig. 1c), which reflects the

added information from the EC. The idea is then that this prob-

ability distribution will be more constrained than what would be

derived from the model ensemble directly. For each constraint,

distributions for DyE will be derived using two different types of

least squares regression and a Bayesian hierarchical model, now

described.

a. Ordinary and total least squares regressions

For both ordinary and total least squares regressions (OLS

and TLS), a and b are determined by minimizing a loss func-

tion that depends on the squared residuals and our estimate

of internal variability in the form of the standard deviation

(sx or sDy, which will depend on model ensemble size) and

assuming that x and Dy are represented by normal distri-

butions with these standard deviations centered on x and

Dy. Section 3c below describes how sx and sDy are esti-

mated. OLS and TLS only differ in the method used to de-

rive a and b. For OLS, all errors are assumed to be in the

dependent variable Dy. A weighted approach allows for a

different sDy for each model by finding the a and b that min-

imize�N

i51f[Dy(i)2a2bx(i)]/sDy(i)g2. For TLS, errors in the

x direction (sx) are also accounted for by instead minimiz-

ing �N

i51[Dy(i)2a2bx(i)]2/[sDy(i)
2 1b2sx(i)

2
].

To decompose the intermodel variance according to (3),

s2
EC 5s2(Dy)2s2

� since the variance in Dy consists of variance
explained by the EC (s2

EC) plus the variance of the residuals

(s2
� ). The internal variability component s2

IV is estimated via

s2
IV 5b2s2

x 1s2
Dy

1 and s2
d is then estimated as the remainder of

s2
� . While this procedure does not guarantee that s2

d is positive,

as it needs to be, we find that s2
IV is less than s2

� in all cases.

To provide a constrained future projection for the real

world, PDFs for each of the parameters on the right-hand side

of (4) are constructed. A PDF of 1000 a, b combinations is

determined by bootstrapping N models from the N available,

with replacement, and recalculating the regression fit. A PDF

of xE is estimated using a variety of observational products as

described in section 2 (to account for observational error) and

then modeling xE as a normal distribution centered on each

observed value with standard deviation sx (to account for the

uncertainty due to internal variability); that is, we assume that

the observed xE is the most likely true value xE, an assumption

that, of course, cannot be tested in the context of the single

observational record. Internal variability will also play a role in

the future 2 past difference, so to account for this combined

with the other forced contributions that are unrelated to the

EC (DyIV 1 dE) 1000 values are sampled from a normal

distribution with variance s2
� 2b2s2

x, which is equivalent to

s2
Dy 1s2

d (see footnote 1). Combining all permutations of

these samples gives 1 billion values of DyE according to

(4) that represent our constrained distribution for the real

world (Fig. 1c).

The real world forced response (DyE), absent internal

variability, can be estimated by applying a similar proce-

dure but without the internal variability component, that is,

DyE 5a1bxE 1 dE. To sample dE we estimate the variance of

d by s2
d 5s2

� 2s2
IV and then 1000 values of dE are sampled

from a normal distribution with this variance.

b. The Bayesian hierarchical model

The Bayesian hierarchical model (BHM) fits the regression

model (2) by modeling the ‘‘true’’ x and Dy (uncontaminated

by internal variability) as probability distributions based on x,

Dy, sx, and sDy, and the correlation between the internal var-

iability uncertainties (rxDy).

The BHM is described in more detail in the appendix, so

here we summarize how its output is used to decompose the

variance in Dy via (3) and to estimate the constrained distri-

bution of DyE. A product of the BHM is 1000 estimates of

(a, b, s2
d, d

2
x), where d2x is the standard deviation of x (i.e., the

spread across the ‘‘true’’ values of the predictor in the climate

models). For each of these 1000 estimates, the variance ex-

plained by the EC is given by s2
EC 5b2d2x, the variance ex-

plained by intermodel differences in the forced response not

described by the EC is given by s2
d, and the variance explained

by internal variability is given by s2
Dy(12 r2xDy). The fraction

of variance explained by each component is estimated from

each BHM sample separately and then the mean over the

1000 estimates is displayed.

The BHM provides a ready formalism for sampling the

various uncertainties already described for OLS and TLS.

To quantify the constrained distribution for the forced re-

sponse, the 1000 (a, b, s2
d) combinations are combined with

1000 estimates of xE (sampled in the same way as OLS and

TLS). The constrained distribution of the forced response Dy is
given by a1bxE 1N (0, s2

d), where N (0, s2
d) represents a

random sample from a normal distribution with zero mean and

variance s2
d. Combining the 1000 estimates of (a, b, s2

d) with

1000 estimates of xE and 1000 samples from N (0, s2
d) gives

1 billion values of Dy to form the constrained distribution.

To construct the constrained distribution for the forced re-

sponse plus internal variability, Eq. (A10) is used, where each

of the 1 billion Dy values derived above are combined with

rxDy(sDy/sx)(xE 2 xE) and a random sample from a normal

distribution with variance equal to s2
Dy(12 r2xDy), where xE is

the actual observed value and xE are the 1000 estimates sam-

pled from the PDF, corresponding to an assumption that the

most likely value of xE is that which we have observed.

c. Estimating sx, sDy, and rxDy

The above procedures rely on estimates of the uncertainty

due to internal variability on x and Dy as represented by sx and

1 This can be shown by considering Dy and x to deviate from the

measuredDy and x by amounts «Dy and «x due to internal variability

[i.e., Dy(i) 1 «Dy 5 a 1 b[x(i) 1 «x] 1 d(i)]. Rearranging gives

Dy(i) 2 a 2 bx(i) 5 «(i) 5 b«x 2 «Dy 1 d(i), so s2
� can be parti-

tioned according to s2
� 5b2s2

x 1s2
Dy 1s2

d, where b2s2
x 1s2

Dy rep-

resents the contribution due to internal variability (s2
IV).
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sDy. For OLS and TLS, it is assumed that the PDFs of x and Dy
are Gaussian and centered on x and Dy, with standard devia-

tions sx and sDy, respectively. For BHM, the correlation be-

tween these uncertainties due to internal variability (rxDy) is

also incorporated by assuming a bivariate normal distribution

centered on x and Dy [Eq. (A8)].

Therefore, we need to estimate values of sx, sDy, and rxDy
and this must necessarily account for the number of ensemble

members available for a given model since the more ensemble

members there are, the smaller sx and sDy will be. Ideally, we

would also want to account for the fact that different models

may have different representations of internal variability and,

therefore, different values of sx and sDy. But, as will be de-

scribed individually for the constraints discussed below, at-

tempts at quantification of sx and sDy for models with a small

number of members, or for the single realization of the real

world, yield highly uncertain results. Instead, we opt to neglect

intermodel differences in the representation of internal vari-

ability and make use of the five LEs described in section 2 to

estimate sx and sDy and, therefore, assume that the internal

variability estimated from the five LEs is representative of that

of the CMIP archive as a whole and of the observations. The

validity of this will be discussed for each EC.

For a CMIP model with np and nf ensemble members for the

past and future, respectively, sx and sDy are estimated by

subsampling np and nf members (with replacement) from the

past and future periods of each LE and repeating 1000 times.

The LE ensemble mean is then subtracted from the mean of

each subsample. The ensemble mean x and Dy for each LE will

be much closer to the true x and Dy for that model than the

subsamples when np and nf are small, so these 1000 anomalies

can be considered to represent 1000 deviations from the true x

and Dy that could arise due to sampling of internal variability

with only np and nf members. When np or nf 5 1, these 1000

samples give no more information than would be obtained by

using the individual members that make up the LE, but we

follow the same procedure to allow all members from the LE to

be used, while giving equal weighting to each LE.

The 1000 values for each LE are pooled together to give

5000 anomalies from the ‘‘truth’’ that have been sampled from

five different models, each with their own representation of

internal variability. The values of sx and sDy are then given by

the standard deviation across these 5000 anomalies and rxDy is

simply the correlation between the LE subsamples used to

calculate sx and sDy. Thus, sx, sDy, and rxDy are assigned to

each model depending on the model ensemble size and the

variability from the five LEs. The sx for the observed value is

calculated in the same way, using np 5 1.

4. The Southern Hemisphere jet shift
constraint (SHJET)

The SHJET constraint relates a model’s past SH jet latitude

(fo) to its future projected SH jet shift (Df) under anthropo-
genic forcing. Kidston and Gerber (2010) first showed that, in

the CMIP3 ensemble, in the annual mean, a model with a

lower-latitude SH jet stream, exhibited a larger poleward shift

by the end of the twenty-first century under anthropogenic

forcing. A similar relationship was found by Son et al. (2010)

for a model’s poleward jet shift in response to ozone depletion.

Simpson and Polvani (2016, hereafter SP2016) then revisited

the conclusions of Kidston and Gerber (2010) in the CMIP5

archive and showed that the constraint was still present, but

that it was actually marked by a strong seasonality, with the

strongest correlation between fo and Df occurring during the

SH winter. This seasonality also called into question the pre-

viously proposed hypothesis for why the SHJET constraint

exists, namely that it is related to intermodel spread in eddy-

feedback strength as identified through the southern annular

model (SAM) time scale, since the intermodel spread in SAM

time scale primarily occurs in the summer. So, this constraint

still lacks explanation, but given that it has already been found

inmultiplemodel ensembles, we already have some confidence

that it is robust to quasi out-of-sample testing. Indeed, Curtis

et al. (2020) have already shown that the SHJET constraint is

still present in CMIP6 over May–October. Here, we will draw

the same conclusion but with a focus on the JJA season and

further quantify the constraint on the future poleward shift of

the SH jet that we may expect to see in the real world.

The jet latitude is defined as the latitude of the maximum

700-hPa zonal mean U in the SH, determined by finding the

maximum of a quadratic fit using 700-hPa zonal mean zonal

wind at three grid points on the 18 grid: the gridded maximum

and the two adjacent grid points. The predictor for this con-

straint is the 1979–2014 JJA jet latitude (fo) and the predictand

is the JJA future (2070–99) 2 past (1979–2014) jet shift (Df),
both expressed in degrees north.

Figure 2a reproduces the CMIP5 results of SP2016. A

negative correlation between fo and Df exists: models with

lower-latitude jets exhibit larger future poleward jet shifts.

Furthermore, many of the models are biased equatorward

relative to the reanalyses, suggesting that they may predict

too large a poleward jet shift. Figure 2b now shows Df versus

fo for the CMIP6 models. A negative correlation is still

present in CMIP6 and it is still significant (Fig. 3c).

In CMIP6, the across-model variance in fo is reduced

(Fig. 3a), although the variance in Df is similar (Fig. 3b). As

would be expected under these circumstances, the fraction of

variance explained by the EC has reduced in CMIP6 and it is

the intermodel spread in other aspects of the forced response,

not explained by the EC that is explaining relatively more

of the variance. Depending on the method used, the EC ex-

plained 60.7%–62.4% of the variance in CMIP5 and explains

25.1%–25.6% of the variance in CMIP62 (Fig. 3d). For this

EC, the choice of method affects the partitioning of variance

explained between internal variability and the d component

(Fig. 3d) with less variance explained by internal variability in

the BHM. This is due to the high correlation between errors in

fo and Df. There is a negligible contribution from intermodel

2 Note that the variance explained here does not necessarily

correspond to the square of the correlation coefficient shown in

Fig. 3c because it reflects the variance explained across a single

member from each model as opposed to across model ensem-

ble means.
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spread in the globally averaged warming (Fig. 3d, black hatching

on gray bars; see figure caption for method).

While the EC explains less variance in CMIP6, the rela-

tionship between fo and Df is still significant (Fig. 3c) and this

still holds after crudely accounting for model interdependence

by first averaging over models from the same modeling center

(Fig. 1 in the online supplemental material). Furthermore, the

a and b regression parameters are not particularly sensitive to

the method used and agree between CMIP5 and CMIP6 within

the uncertainties (Figs. 3e,f). This is further demonstrated in

Fig. 2c where the CMIP5 BHM a and b are used to predict the

CMIP6 Df. This works reasonably well and indicates that we

could have predicted 31.56% of the CMIP6 intermodel spread

in ensemble mean Df, based only on knowledge of the CMIP6

fo values and the CMIP5 EC. We can actually predict more of

the CMIP6 variance with the CMIP5 regression coefficients

than with those derived fromCMIP6 itself, but this is likely just

due to random chance.

Figures 4a and 4b indicate the extent to which CMIP6 can

be considered an out-of-sample test compared to CMIP5 by

FIG. 3. (a) Variance in Df using ensemble means for each model. (b) As in (a), but for fo. (c) The correlation r betweenfo and Df both

without (left) and with (right) first regressing out the component that is linearly related to globally averaged surface temperature change

(DT2m). Whiskers show the 95% confidence intervals estimated using a bootstrapping with replacement procedure. (d) A decomposition

of the total variance across models, using a single member. The black hatching on the gray bar shows the percent variance explained by

intermodel differences in DT2m, calculated by differencing the total variance and the variance after regressing out the contribution that is

linearly related to DT2m. The colored bars show the percent variance explained by the EC (red), internal variability (green), and inter-

model differences in the forced response that are unrelated to the EC (blue) for each method. (e),(f) The a and b regression parameters.

Black ranges in (e) and (f) show the 95% confidence intervals derived by bootstrappingmodels with replacement for OLS and TLS and by

using the 1000 estimates of the regression coefficients from the BHM.

FIG. 2. (a) CMIP5 Df vs fo. Uncertainties for each model are derived using the method in section 3c and depicted here using the

95% confidence interval (61.96s range). Black vertical lines show fo for ERA5, ERA-Interim, JRA-55, and MERRA2. Brown, green,

and purple dashed lines show the best fitting regression line for the OLS, TLS, and BHM methods, respectively. The correlation (r) is

quoted in the top right. (b) As in (a), but for CMIP6. (c) The Df for CMIP6 that is predicted based on the CMIP5 BHM regression

coefficients and the CMIP6 fo values vs the actual CMIP6 Df values. The percentage of CMIP6 variance in Df that is explained by the

prediction is quoted.
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showing the correlation between Df in a CMIP6 model and

Df in its CMIP5 predecessor using 22 models that are directly

related (Table 1). The correlation between Df in the CMIP5

and CMIP6 models is not significant, although the correlation

for fo in isolation is slightly higher and marginally signifi-

cant (supplemental Fig. 2a). Overall, this suggests that we

can consider CMIP6 to be at least a partial out-of-sample

test compared to CMIP5.

To assess the extent to which the uncertainty on fo and

Df (i.e., sx and sDy used in the regression) determined from

the LEs might be representative for each CMIP model, the

PDFs offo andDf for the five LEs are shown in Figs. 4c and 4d

along with a quantification of the standard deviation of fo

across the members and its uncertainty in Fig. 4e (colored bars

and black range). The closer the agreement between the LEs,

the more confidence we may have that the values derived from

them are representative for other CMIP models. There is a

range in sfo
but the black uncertainty ranges in Fig. 4e indicate

that even with a large ensemble, it is still difficult to accurately

determine sfo
.

Another method that could have been considered for esti-

mating sfo
(and similarly sDf) based on the data from a given

model, as opposed to the LEs, is to bootstrap, with replace-

ment, individual years from the past for a given model to

generate a new climatology and a new estimate of fo. This

could be repeated, say, 1000 times and sfo
calculated as the

standard deviation of fo across these 1000 samples. The col-

ored ranges in Fig. 4e indicate the range of estimates of sfo

determined this way from each individual LE member. This

method has the potential to be highly inaccurate (cf. colored

ranges with colored bars in Fig. 4e), presumably because

36 years within one member is not sufficient to truly charac-

terize the full distribution of variability. So even though the

value of sfo
estimated from the LEs may not be truly repre-

sentative for every model, it is likely more representative than

what could be estimated from individual CMIP models when

the ensemble size is small. Another method that could be

considered for cases where there is no dependence of the in-

ternal variability on the climate state is to bootstrap from the

preindustrial control simulations provided for each model, but

we have not considered this here given that jet stream vari-

ability is expected to depend on climate state (Barnes and

Polvani 2013).

To constrain future projections, we assume that sfo
esti-

mated from the LEs is representative of the uncertainty on

the real world fo. The estimate of sfo
from the reanalysis

products using the bootstrapping of individual years method

(black dots in Fig. 4e) is close to the estimate from the LEs

(dotted line in Fig. 4e), especially considering the large

FIG. 4. (a) The relationship between Df in a CMIP6 model and

its CMIP5 predecessor. (b) The correlation of the points shown in

(a) along with a 95% confidence interval (estimated by boot-

strapping models with replacement). (c) PDFs of the anomalies of

fo from the true (ensemble mean) fo for each LEmembers for the

five LEs, using the same color scheme as in (e). (d)As in (c), but for

the distribution of Df anomalies from the ensemblemean. (e) Bars

show the standard deviation of the distributions shown in (c). Black

ranges show the uncertainty on the bars by bootstrapping with

replacement the members in (c) and recalculating s(fo). Colored

ranges show values of s(fo) calculated by bootstrapping the indi-

vidual years from a single member, 1000 times, and calculating the

standard deviation across these bootstrapped samples; s(fo) is

 
calculated this way for each member of the LE, and the range

shows the range of values derived. Black points show an estimate of

s(fo) by bootstrapping years, with replacement for the reanalyses.

The black dotted line shows the value of s(fo) that is used to

sample the observational uncertainty (i.e., that determined from

the five LEs pooled together).
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uncertainty associated with this method, suggesting this is a

reasonable approach.

Constraining projections for Df following the methods in

section 3 indicates that the poleward shift in the real world will

be considerably smaller than the CMIP5 or CMIP6multimodel

mean, since the reanalysis jet position is at the poleward end of

the CMIP model distribution (Fig. 5). Note that, unlike Curtis

et al. (2020), we do not find a large reduction in the CMIP6

multimodel mean poleward shift compared to CMIP5, but there

are a variety of differences in ourmethods, including a focus on a

different forcing scenario (they used 4xCO2 simulation) and a

narrower winter season (they used May–October). Also, unlike

Bracegirdle et al. (2020) we do not find a substantial improve-

ment in fo in CMIP6. While our methods differ, we suspect

this may be largely due to the models considered as the two

most equatorward models in CMIP6 here (MIROC-ES2L and

CNRM-CM6-1-HR) were not included in that study. Taking

the mean across the CMIP5 and CMIP6 models gives a pro-

jected jet shift of 1.818 poleward while that for the constrained

jet shift distribution using OLS, TLS, and BHM is 0.358, 0.388,
and 0.488 poleward, respectively, for the forced response, with

95% confidence intervals of (2.88 poleward to 2.28 equator-

ward), (3.08 poleward to 2.28 equatorward), (3.38 poleward to

2.38 equatorward) with an 88.5%, 86.5%, 83.4% chance, re-

spectively, that the forced poleward shift in the real world will

be less than the CMIP5 and CMIP6 ensemble mean. The three

regression methods give similar results, but slightly larger dif-

ferences are seen for CMIP6 than CMIP5, perhaps because the

constraint explains less variance in CMIP6, leaving more room

for the regression methods to differ.

When also considering the role that internal variability may

play in our one potential future (right portion of Figs. 5b–d),

the 95% confidence intervals suggest that it is very unlikely we

will observe a poleward shift of more than around 3.58. In fact,

following Cox et al. (2018), if we consider the 66% confidence

interval (white lines on each colored bar) to correspond to the

‘‘likely range’’ according to Intergovernmental Panel onClimate

Change (IPCC) definitions, we find the CMIP ensemble mean

sits at the very poleward edge of this likely range.

Overall, the SHJET emergent constraint still survives in

CMIP6 and it could represent a useful constraint on the pole-

ward shift we should expect to see in the real world, if the

mechanism behind the constraint could be fully understood.

Toward that end, supplemental Fig. 3 repeats another compo-

nent of the SP2016 analysis and indicates that fully understand-

ing this constraint could likely be achieved by understanding

why, in winter, the forced changes in zonal wind are roughly

anchored to the same position in each model, regardless of

climatological jet latitude differences, such that the wind

anomalies lead to a poleward shift of low-latitude jets but a

strengthening for higher-latitude jets.

5. North American stationary waves with extension to
regional hydroclimate (VWIND)

Our second EC aims at constraining meridional wind (V)

changes over North America during the December–February

(DJF) season and was proposed by Simpson et al. (2016,

hereafter S2016). The CMIP5 ensemble mean change in 300-hPa

V consisted of southerlies off the U.S. west coast, northerlies

FIG. 5. (a) Jet shift (Df) vs climatological jet latitude fo for ensemble means of the CMIP5 (red) and CMIP6 (blue) models along with

best fitting regression lines for CMIP5 and CMIP6 combined for OLS (brown), TLS (green), and BHM (purple). Black vertical lines show

the reanalyses (see the legend of Fig. 2) and filled diamonds show the CMIP5 and CMIP6 ensemble means. (b) CMIP5 constrained

projections: the left portion reproduces the CMIP5 Df values of (a) along with the 66% confidence interval (dotted red lines); the middle

portion shows the constrained projections for the forced response i.e., excluding internal variability; and the right portion shows the

constrained projections for the forced response plus internal variability for a single realization. The red horizontal line across the panel

shows the CMIP5 ensemble mean while the gray range shows the 95% confidence interval for the range of jet shifts that could arise due to

internal variability for a single member, estimated from the LEs. (c) As in (b), but for CMIP6; (d) as in (b), but for CMIP5 and CMIP6

combined. Brown, green, and purple ranges with black line andwhite range show the 95%confidence intervals, mean, and 66%confidence

intervals of constrained projections using TLS, OLS, and BHM, respectively. Values quoted are from the mean across the methods and

are, from top to bottom, Df, the range of the 95% confidence interval, and the probability of the real world future Df being less poleward

than the relevant CMIP ensemble mean.
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over the U.S. interior southwest, and southerlies off the U.S.

east coast (Fig. 6e). The same pattern is also found in CMIP6

(Fig. 6g). These V anomalies are primarily associated with in-

termediate scale (zonal wavenumber k . 3) stationary waves

that aremeridionally trapped in the Pacific waveguide (Figs. 6b

and 6d), as can be seen by comparing the full change in V with

that after filtering for k . 3 (compare Figs. 6e and 6f, and

Figs. 6g and 6h). By reproducing the V changes in a stationary

wave model when only imposing changes in the upper tropo-

spheric zonal mean zonal wind, and using stationary wave

theory, S2016 argued that the mechanism behind this change

involves the warming-induced strengthening of the westerlies

in the subtropical upper troposphere, acting to lengthen

the scale of stationary waves that can be supported by the

Pacific waveguide, leading to the V anomalies downstream

over North America. Based on this mechanistic under-

standing, it would then be expected that the magnitude of a

model’s change in V would be related to (i) the amplitude of a

model’s intermediate scale stationary waves in the Pacific–

North American sector and (ii) the strengthening of the zonal

mean westerlies in the subtropical upper troposphere (these

two quantities are uncorrelated).

S2016, therefore, used two predictors to predict the change

in eddy meridional wind averaged over the interior southwest

of the United States (DVSW; red box in Fig. 6e): (i) the root-

mean-square amplitude of the k . 3 stationary waves in the

past (jcj), based on eddy V over a region in the eastern Pacific/

southern United States (red box in Fig. 6b); and (ii) the change

in zonal mean zonal wind at 100 hPa averaged from 208 to 408N
(DU100). Consistent with the proposed mechanism, DVSW was

found to be significantly negatively correlated with jcj; that is, a
model with larger amplitude k . 3 stationary waves in its cli-

matology exhibited larger northerly anomalies over the interior

southwestUnited States (Figs. 7a and 8c ) and a larger amplitude

of the meridional wind pattern over North America more gen-

erally (Fig. 6i). A negative, although insignificant, correlation

was also found between DVSW and DU100: the larger the increase

in zonal mean zonal wind in the subtropical upper troposphere,

the larger the negative anomaly in DVSW (Fig. 7b). A multiple

linear regression using DU100 and jcj as predictors explained a

substantial fraction of the variance in DVSW (Fig. 7c). S2016 ar-

gued that this was further evidence for their proposed mecha-

nism; in addition, sincemany of themodels have stationarywave

amplitudes (jcj) that are too large (compare with the reanalyses

in Fig. 7a), they inferred that the real world DVSW will likely be

smaller than the CMIP5 ensemble mean.

While the VWIND constraint was accompanied by a plau-

sible mechanism that was verified by stationary wave model

FIG. 6. A comparison of 300-hPa meridional wind between (left) CMIP5 and (right) CMIP6. (a),(c) The climatological V300 for

CMIP5 and CMIP6, respectively; (b),(d) as in (a) and (c), but after filtering to only retain zonal wavenumbers greater than 3. (e),(g) The

future2 past difference for CMIP5 and CMIP6, respectively; (f),(h) as in (e) and (g), but after filtering to only retain zonal wavenumbers

greater than 3. (i),(k) The correlation between the climatological k . 3 stationary wave amplitude (jcj) and the change in 300-hPa

meridional wind across models for CMIP5 and CMIP6. (j),(l) The across-model variance in k. 3meridional wind for CMIP5 and CMIP6,

respectively. The stippling in (e)–(h) shows regions where more than 80% of the models agree on the sign of the anomaly. The red box in

(b) and (d) shows the region used to define jcj (1608–608W, 208–408N). The red box in (e) and (g) shows the region used to define DVSW

(1108–958W, 258–378N).
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experiments and also was shown to be robust in perturbed

physics experiments by van Niekerk et al. (2017), we now test

whether it still survives in CMIP6. It is only the predictor jcj
that can be used for an emergent constraint since DU100 relies

on future information. We do, however, show the relationship

betweenDVSW andDU100 in Fig. 7 as well, to lend support to the

stationary wave theory argument of S2016, given that it is im-

portant to accompany an EC with a mechanistic explanation.

Negative correlations between DVSW and both jcj and DU100

are still found in CMIP6 (Figs. 7d,e). The correlation between

jcj andDVSW is significant for both CMIP5 and CMIP6 (Fig. 8c)

and this remains true after crudely accounting for model in-

terdependence by first averaging over models from the same

modeling center (supplemental Fig. 4). Lending support to

the stationary wave theory arguments of S2016, combining jcj
and DU100 in a multiple linear regression explains a similar

fraction of variance in CMIP6 as it does in CMIP5 regardless

of which ensemble the regression coefficients are derived from

FIG. 7. (a) DVSW vs jcj, (b) DU100 vs jcj, and (c) the relationship between the actual DVSW and that predicted using multiple linear

regression onto jcj and DU100, all for CMIP5. Uncertainties for each model in (a) and (b) are derived using the method in section 3c and

depicted here using the 95%confidence interval (61.96s range). Black vertical lines in (a) show jcj for ERA5, ERA-Interim, JRA-55, and

MERRA2. Brown, green, and purple dashed lines show the best fitting regression line for OLS, TLS, and BHM. (d)–(f) As in (a)–(c),

but for the CMIP6 models. (g) The CMIP6 DySW that is predicted based on the CMIP5 BHM regression onto jcj vs the actual CMIP6

DySW values. (h) The DySW for CMIP6 that is predicted based on the CMIP5 BHM regression onto Du100 vs the actual DySW. (i) The
CMIP6DySW that is predicted based on the CMIP5multiple linear (OLS) regression onto jcj andDu100 vs the actualDySW. Filled diamonds

in each panel show the ensemble mean.
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(Figs. 7f and 7i). Focusing now on the only aspect that can be

used as an emergent constraint—the relationship between

DVSW and jcj according to DVSW(i)5 a1 bjcj(i)1 «(i)—using

the CMIP5 regression coefficient based on jcj alone to

predict the CMIP6 DVSW can only explain 16% of the

variance (Fig. 7g).

The variance across models in DVSW is reduced by 0.87m2 s22

in CMIP6 compared to CMIP5 (Fig. 8a). This is expected based

on the EC given that the variance across models in jcj (s2
jcj)

is also substantially reduced by roughly 0.63m2 s22 (Fig. 8b;

cf. Figs. 6l and 6j). In CMIP6 (Fig. 7d), there are no longer

models on the extreme biased end of the CMIP5 range in jcj
(cf. Figs. 7a and 7d), resulting in only 10.6%, 8.7%, and 14.9%

of the variance is DVSW being explained by the EC, compared

to 29.2%, 28.6%, and 30.9% in CMIP5 for OLS, TLS, and

BHM, respectively (Fig. 8d). So, even though the regression

coefficients that relate DVSW to jcj are similar between CMIP5

and CMIP6 (Figs. 8e,f), because of the reduced spread in the

predictor the EC is less effective in CMIP6, as will be further

demonstrated below.3

Before quantifying the constraint on DVSW, we first check

someof our assumptions. First,DVSW in theCMIP6models is not

correlatedwithDVSW in its CMIP5 predecessor (Figs. 9a and 9b).

The stationary wave amplitude jcj in the CMIP6 models is

correlated with that in CMIP5 but they do not follow the 1:1

line (supplemental Fig. 5). Overall, this suggests it is reason-

able to consider CMIP6 as being at least a partial out-of-

sample test compared to CMIP5. Second, there are only minor

differences across the LEs in the uncertainty in jcj and DVSW

(Figs. 9c–e) suggesting that, while assigning a sjcj and sDVSW
to

each CMIP model based on the LEs may not be completely

accurate, it is likely a best estimate in the absence of a large

ensemble for each CMIP model. Finally, the estimated sjcj
from the observations obtained by bootstrapping individual

years, while likely subject to considerable uncertainty (colored

ranges in Fig. 9e), is close to the estimate from the LEs (cf. black

dots and dotted line in Fig. 9e), indicating that basing sjcj of the
real world on the LEs is likely a reasonable approximation.

The constraint on DVSW is quantified in Fig. 10 using the

methods of section 3. In CMIP5, the EC does indeed represent

a substantial constraint on DVSW with OLS, TLS, and BHM

indicating an 84.4%, 84.9%, and 86.8% chance, respectively,

that the forced response will be smaller (less northerly) than

the CMIP5 ensemble mean along with a constrained mean

DVSW of 21.17, 21.16, and 21.04m s21, respectively, com-

pared to22.19m s21 in the CMIP5 ensemble mean (Fig. 10b).

The constrained distribution of forced DVSW here is broader

than that in S2016 since they did not incorporate uncertainty in

the observed value of jcj, or other contributions to the forced

response, except for the influence of DU100. The constrained

distribution ofDVSW fromCMIP5 that includes the influence of

internal variability is broader still, but nevertheless still indi-

cates that the DVSW we could expect to see in the real world

has around an 83% chance of being smaller than the CMIP5

ensemble mean (Fig. 10b).

FIG. 8. (a) Variance inDVSW using the ensemblemean for eachmodel. (b)As in (a), but for jcj. (c) The correlation between jcj andDVSW

both without (left) and with (right) first regressing out the component that is linearly related to globally average surface temperature

changeDT2m.Whiskers show the 95% confidence interval derived by bootstrappingmodels with replacement. (d) A decomposition of the

total variance in DVSW across models using a single member. The black hatching on the gray bar shows the percent variance explained by

intermodel differences in DT2m, calculated by differencing the total variance and the variance after regressing out the contribution that is

linearly related to DT2m. The colored bars show the percent variance explained by the EC (red), internal variability (green), and inter-

model differences in the forced response that are unrelated to theEC (blue) for eachmethod. (e),(f) Thea andb regression parameters for

DVSW5a1bjcj. Black ranges in (e) and (f) show the 95% confidence interval derived by bootstrappingmodels with replacement forOLS

and TLS and by using the 1000 regression coefficients estimated from the BHM.

3 Themodels that had large biases in CMIP5 were BCC-CSM-1-m

with jcj 5 5.7, which is much improved in its CMIP6 successor

BCC-CSM2-MR (jcj 5 3.1); MRI-CGCM3 (jcj 5 4.6), which has

improved to jcj 5 3.8 in MRI-ESM2-0; FGOALS-g2 (jcj 5 4.6),

which has improved slightly to jcj 5 4.3 in FGOALS-g3; and the

IPSL variants, which ranged from jcj 5 4.8 to 5.5 and have now

improved to jcj 5 4.1 in IPSL-CM6A-LR.
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Figure 10a indicates that the ensemble mean shift to a

smaller DVSW in CMIP6 compared to CMIP5 is consistent

with a shift along the regression line accompanying a smaller

ensemble mean jcj. However, the fact that CMIP6 no longer

contains models with extremely large negative values of DVSW

means that the EC is no longer really an effective constraint

(Fig. 10c). The constrained range, including internal variabil-

ity, encompasses almost all the CMIP6 models, although it

does still suggest the most likely value of DVSW is slightly

smaller than the ensemble mean.

A constraint on upper-levelVmay be of limited practical use

by itself, but S2016 demonstrated that these V changes have an

equivalent barotropic structure and the accompanying near

surface meridional wind anomalies have implications for re-

gional hydroclimate. They did not quantify the associated

constraint on precipitation, but argued that we should expect

the real world to behave like models with smaller jcj, which
exhibited less wetting over the U.S. west coast and less drying

over the interior southwest than the CMIP5 ensemble mean.

Here, this analysis is extended to provide a more rigorous

quantification of the precipitation constraint (or lack thereof)

in three regions: the U.S. west coast, the U.S. south, and

southern Mexico (Fig. 11a, red). Note that DP in these regions

is clearly correlated with jcj across the CMIP5 models in the

manner described by S2016 (Fig. 11a). Models with large-

amplitude stationary waves exhibit more wetting on the U.S.

west coast and more drying over the interior southwest and

Mexico associated with their larger meridional wind changes.

In CMIP6, however, these correlations between jcj and pre-

cipitation are largely absent, except over southern Mexico

(Figs. 11b,e,h,k).

The reason for the disappearance of this correlation struc-

ture in CMIP6 is because there are no longer any models

that have very large jcj and it was those models that were

dominating in the CMIP5 correlations. This becomes clear by

comparing the CMIP5 correlations with those after omitting

the CMIP5models that have jcj larger than themaximum jcj in
CMIP6 (compare red solid and hatched bars in Figs. 11e,h,k).

Once these six CMIP5 models have been omitted, the corre-

lation between jcj and precipitation in these regions is no

longer significant in CMIP5 either.

In CMIP5, even though there was a significant correlation

between jcj and west coast precipitation, it was never really

that effective a constraint, as there were too many additional

uncertainties (Fig. 12b) and the same is true now in CMIP6

(Fig. 12c). Over the southern United States, the CMIP5 con-

straint suggested the real world response will more likely be a

slight wetting as opposed to the slight drying seen in the CMIP5

FIG. 9. (a) The relationship betweenDySW in a CMIP6model and

its CMIP5 predecessor. (b) The correlation of the points shown in

(a) along with 95% confidence interval derived by bootstrapping

models with replacement. (c) PDFs of the anomalies in stationary

wave amplitude jcj from the true (ensemble mean) jcj for each LE

member for the five LEs, using the same color scheme as in (e).

(d) As in (c), but for the distribution of DySW for future 2 past

differences from each LE members. (e) Bars show the standard

deviation of the distributions shown in (c). Black ranges show the

uncertainty on the bars by bootstrapping with replacement the

members of the LE and recalculating sjcj. Colored ranges show

values of sjcj calculated by bootstrapping the individual years

from a single member, 1000 times, and calculating the standard

 
deviation across these bootstrapped samples. The sjcj is calculated
this way for each member of the LE and the range shows the range

of values obtained. Black points show an estimate of sjcj for the
reanalysis using the bootstrapping method. The black dotted line

shows the value of sjcj that is used to sample the observational

uncertainty i.e., that determined from the five LEs pooled together.
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ensemble mean and that those models with a very extreme

drying are very unlikely (Fig. 12f). Consistent with this, in

CMIP6 now that the stationary wave biases have been reduced,

the ensemble mean precipitation change has shifted to being

slightly positive and there are no longer any models with an

extreme drying (Fig. 12g). However, the reduced spread in

CMIP6 does also mean that, with the uncertainties involved,

the constraint does not narrow down projected changes beyond

theCMIP6 distribution. Over southernMexico, the CMIP5EC

indicated that we should expect to see less drying than

the CMIP5 ensemble mean (Fig. 12j). Indeed, with the model

improvements in CMIP6, there is slightly less drying over this

region (Fig. 12k). The EC is still somewhat useful here and

suggests that there is a reasonable chance (;72%) that the real

world will not exhibit as much forced drying as the CMIP6

ensemble mean (Fig. 12k). However, the constrained range

incorporating internal variability is still sufficiently wide that it

almost encompasses all of the CMIP6 models.

6. The ENSO-based EC on projected California
precipitation change (CALP)

Another emergent constraint on DJF California precipita-

tion was proposed through CMIP5 by Allen and Luptowitz

(2017), AL2017, hereafter. They related amodel’s 2006 to 2100

trend in DJF California precipitation to its representation of

the interannual correlation between DJF ENSO variability

(given by theNiño-3.4 index) andDJFCalifornia precipitation.

The proposed mechanism behind this constraint was that the

future projected California precipitation changes were related

to the El Niño–like SST warming trend seen in many models

and that models with more realistic interannual ENSO tele-

connections are more likely to simulate this forced change

correctly.

AL2017 found that the real world correlation between

ENSO and California precipitation using winters from 1948/49

to 2014/15 was 0.36 and argued that many models do not ac-

curately represent this, with model values ranging from 20.12

to 0.58. They generated two groups of models based on their

correlation between Niño-3.4 and California precipitation,

r(Niño, pr). The models with a correlation below 0.2 were re-

ferred to as the ‘‘LOW-r’’ models and those with a correlation

above 0.3 were referred to as the ‘‘HIGH-r’’ models, with the

HIGH-r models considered more realistic. It was found that

the average California precipitation trends were higher in the

HIGH-r models. While AL2017 did not explicitly quantify

the constraint on California precipitation, they argued that the

models that exhibit more realistic ENSO teleconnections to

California, exhibited larger and more consistent increases in

California precipitation over the twenty-first century. One was

left to infer that we should expect the real world to behave

more like these models. This is the opposite conclusion to the

constraint drawn by S2016 above, which was obviously prob-

lematic at the time. However, it has been shown above that,

while the mechanism of S2016 shows promise, it does not

represent an effective constraint on U.S. west coast precipita-

tion, given the uncertainties. So, we see now whether the

AL2016 constraint does any better.

Figure 13a shows r(Niño-3.4, pr). Six estimates of the ob-

served correlation over the 1948 to 2014 period are shown

using all combinations of datasets described in section 2 and

these range from 0.30 to 0.35. However, there is likely a large

FIG. 10. (a) CMIP5 (red) and CMIP6 (blue) DVSW vs jcj along with the best fitting regression lines for CMIP5 and CMIP6 combined

using OLS (brown), TLS (green), and BHM (purple). The four reanalyses are shown by the black lines (see Fig. 7 legend). (b) The left

portion of the panel reproduces theCMIP5DVSW from (a) and the red line that spans the panel shows theCMIP5 ensemblemean. The gray

shaded region shows the 95% confidence interval of anomalies in DVSW that could arise due to internal variability, determined from the

LEs. In the middle portion of the panel, the colored bars show the 95% confidence interval of the constrained forced response using

OLS (brown), TLS (green), and BHM (purple). The black line shows the mean of the constrained distribution and white lines delineate

the 66% confidence interval on the constrained distribution. The right portion of the panel is the same as the middle but including the

contribution toDVSW from internal variability that could arise in our one future. Numbers quoted are, from top to bottom, themean across

the methods of the mean change in DVSW, the 95% confidence interval of the constrained distribution (ci), and the probability that DySW
will be greater than (less negative) than the CMIP ensemblemean. (c),(d) As in (b), but for CMIP6 and for CMIP5 and CMIP6 combined,

respectively.
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FIG. 11. (a),(b) The correlation between the stationary wave amplitude jcj and Dpr for CMIP5 and CMIP6 respectively. Stippled regions

are significant at the 95% confidence level by a two-sided bootstrapping test and red contours depict the regions used in (c)–(k). (c),(d) The

relationship betweenDpr averaged over the U.S. west coast and jcj for CMIP5 and CMIP6 respectively along with jcj for the reanalyses and
the best fitting linear regression (brown 5 OLS, green 5 TLS, purple 5 BHM). (e) The red and blue bars display the correlation and its

95% confidence interval (derived by bootstrapping models with replacement) of the points shown in (c) and (d), respectively, and the red

hatched correlation, referred to as CMIP5*, shows the correlation across the CMIP5 models, excluding those that have jcj larger than the

maximum jcj in CMIP6. (f)–(h) As in (c)–(e), but averaged over the U.S. South; (i)–(k) as in (c)–(e), but averaged over southern Mexico.
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uncertainty in this value due to internal variability. The gray

shaded range shows the 95% confidence interval on r(Niño-3.4,
pr) usingGPCC andERSSTv5, estimated by bootstrapping the

individual DJF seasons from 1948–2014 with replacement and

recalculating r(Niño-3.4, pr) 1000 times. This ranges from 0.04

to 0.51 and this magnitude of uncertainty is supported by the

range of values estimated from 1948 to 2014 of the LEs (right

side of Fig. 13a). As such, there is little motivation for choosing

the threshold of r(Niño-3.4, pr), 0.2 to identify models that do

not represent r(Niño-3.4, pr) well.
Nevertheless, we proceed to reproduce the results of AL2017

by comparing 2006–99 California precipitation trends between

models with r(Niño-3.4, pr) . 0.3 (HIGH-r) and models with

r(Niño-3.4, pr) , 0.2 (LOW-r). First, using r(Niño-3.4, pr)
calculated over 2006–99 after detrending each field, as in

AL2017, we are left with 15models in each group, with substantial

FIG. 12. (a) The relationship between Dpr averaged over the U.S. west coast and jcj (red circles 5 CMIP5, blue circles 5 CMIP6, red

diamond5CMIP5 mean, blue diamond5 CMIP6 mean, black vertical lines5 the reanalyses jcj, brown green, and purple dashed lines5
the OLS, TLS, and BHM regression lines using CMIP5 and CMIP6 combined). (b) The CMIP5 Dpr averaged over the U.S. west coast

(shown at left), the constrained distributions of the forced change (shown at center), and the constrained distribution of the forced

change 1 internal variability (shown at right). Colored bars show the 95% confidence interval of the constrained distribution; the black

line shows the mean, and white range shows the 66% confidence interval. Red lines spanning the panel show the CMIP5 ensemble mean

and 66% confidence interval, and the gray range shows the 95% confidence range of Dpr values that could arise due to internal variability.

(c) As in (b), but for CMIP6; (d) as in (b), but for CMIP5 and CMIP6 combined. (e)–(h) As in (a)–(d), but averaged over the U.S. south.

(i)–(l) As in (a)–(d), but averaged over southern Mexico. The values quoted are, from top to bottom, the mean across the methods of the

mean Dpr, the 95% confidence interval of the constrained distribution (ci), and the probability, from the constrained distribution, that the

Dpr will be greater than or less than the CMIP5 or CMIP6 ensemble mean (whichever is larger).
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overlap with those used inAL2017 (letters H and L in Fig. 13a).

We reproduce their result that the ensemblemean of theHIGH-r

models shows a relative increase in California precipitation

compared to the LOW-r models (Fig. 13b). However, an EC

should really be based on a metric determined over the his-

torical period and when using linearly detrended SSTs and

precipitation over 1948–2014 the differences between the

HIGH-r and LOW-r models is weaker, albeit still positive

over California (Fig. 13c). Performing the same calculation in

CMIP6 does produce a relative increase in California precipi-

tation in the HIGH-r models when using the 2006–99 period to

define r(Niño-3.4, pr) (Fig. 13d) but actually produces a relative
decrease overmuch of California in HIGH-rmodels when using

the 1948–2014 period to determine r(Niño-3.4, pr) (Fig. 13e).

FIG. 13. (a) The interannual correlation between detrended DJF Niño-3.4 and detrended DJF California pr anomalies. Dark red and

blue show CMIP5 and CMIP6 values using the 2006–99 period. Light red and light blue show the same but using the 1948–2014 period.

Values are ordered according to the 2006–99 correlation, and the H’s and L’s depicted the models used in the ‘‘HIGH-r’’ and ‘‘LOW-r’’

composites ofAL2017. Black lines show the correlation for different combinations of observational SST and precipitation datasets and the

gray shading shows the 95% confidence interval on the correlation using GPCC precipitation and ERSSTv5 SSTs. Colored ranges on the

right show the minimum to maximum range of the 1948–2014 correlations determined using the LEs. (b)–(e) Differences in 2006–99

precipitation trends between models with a correlation greater than 0.3 and those with a correlation less than 0.2. Stippling indicates

regions where the difference is significant at the 95% level using a two-sided bootstrapping test. (f)–(i) The relationship between the

2006–99 precipitation trend over California and the correlation between the Niño-3.4 index and California precipitation. Correlations are

quoted along with 95% confidence interval determined by bootstrapping models with replacement. Significant correlations are denoted

by an asterisk. Titles in (b)–(i) indicate the time period used to calculate the correlation between the Niño-3.4 index and California

precipitation.
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Figures 13f–i now go beyond the composite difference be-

tween the HIGH-r and LOW-r models and show the correla-

tion between California precipitation trends from 2006 to 2099

and r(Niño-3.4, pr). When using the 1948–2014 period, the

correlation is not significantly different from zero in either

CMIP5 or CMIP6 (Figs. 13g,i) and the same holds true after

crudely accounting for model interdependence by first aver-

aging over the models from the same modeling center (sup-

plemental Fig. 6). This will, therefore, not be an effective

constraint on California precipitation change, so we do not

proceed to quantify it further.

7. Discussion

To perform this analysis, we have proposed a linear regres-

sion method that can be used to provide a constraint on future

projections while incorporating information on the relevant

uncertainties. It is worth discussing how this approach com-

pares to those that have been proposed previously. First, many

prior studies that used the linear regression approach have

not adequately accounted for the uncertainties involved.

Schneider (2018) and Brient (2020) highlight the issues that

arise under this circumstance. They demonstrated constrained

distributions that were clearly too narrow when compared

with model spread. They discussed the various limitations that

may lead to this, such as potential inadequacies of the linear

model or the OLS fit or disproportionate influences from

‘‘bad’’ models. However, the method they described did not

account for the fact that there can be additional spread in the

Dy direction that is introduced by internal variability as well as

other intermodel differences, not explained by the emergent

constraint (our d term) and, in fact, these are the larger con-

tributors to the uncertainty range (supplemental Fig. 7). Here,

we simply introduce these additional uncertainties via sam-

pling procedures and, when doing so, the constrained distri-

butions appear reasonable compared to the spread of Dy
values across models that have a predictor aligned with that in

observations.

To alleviate concerns related to the inadequacies of the OLS

method, we also used TLS and a BHM.We consider the BHM

to be the better method given its ability to model not only the

uncertainties in x andDy but also the correlation between them

(rxDy), as well as to more clearly parse the contributions of each

source of uncertainty. However, reassuringly, conclusions are

not strongly dependent on the regression method used, al-

though the variance partitioning (Figs. 3 and 8d) and some of

the constrained ranges (Fig. 12) do show some small sensitiv-

ities. There is perhaps some indication in Figs. 10a–d and 12e–h

that the BHM constraint better encompasses the spread of

models that have a predictor close to observations. But in each

case this is due to one model that lies outside the constrained

range, which is not unexpected given that the constrained

range is a 95% confidence interval. The overall similarity be-

tween methods occurs despite very different approaches in

quantifying the uncertainty in the regression coefficients, but is

perhaps to be expected since the d term and the uncertainty

due to internal variability in Dy are more important sources

of uncertainty than the regression coefficients themselves

(supplemental Fig. 7). While we still think it is worthwhile

demonstrating the robustness of conclusions across these

methods, overall the constraints considered here suggest that

the simpler OLS or TLS procedures are adequate, although

this may not be the case in situations where the uncertainty in

the regression coefficients is relatively more important. The

recent study of Tokarska et al. (2020) came to similar conclu-

sions when exploring the sensitivity to methods in the context

of constraints on global mean warming.

For each of the methods, it is assumed that a linear rela-

tionship exists. This linear relationship may be strongly influ-

enced by models that are highly biased in the predictor and,

therefore, may no longer exist once such models are removed

from the sample. However, an adequate incorporation of the

uncertainties should be able to account for this. Indeed, this

does seem to work, as exemplified by the S2016 constraint on

U.S. west coast precipitation. For this constraint in CMIP5

there was a significant correlation between the predictor and

west coast precipitation (Fig. 11e), but this was clearly being

influenced by six strongly biased models (Fig. 11c). When

quantifying the constrained distribution of west coast precipi-

tation change, the uncertainties accounted for this, leading to a

constrained distribution that was almost as broad as the orig-

inal model distribution (Fig. 12b).

Another approach to consider is a model weighting proce-

dure (Lorenz et al. 2018; Brient 2020; Brunner et al. 2020), but

this has the potential to be strongly influenced by the limited

number of models that have a predictor close to observations.

If a linear relationship across models does exist, the linear re-

gression method may incorporate more information. We did,

however, check that none of our conclusions are qualitatively

altered if, instead, the model weighting approach of Brient

(2020) is used (not shown).

Recent studies have promoted the use of Bayesian ap-

proaches for this problem (Bowman et al. 2018; Williamson

and Sansom 2019; Renoult et al. 2020) and our BHMmethod is

strongly aligned with these ideas. It differs in 1) our use of large

ensembles to incorporate the uncertainty on modeled and

observed values, with dependence on ensemble size in the case

of the models, and 2) the resampling procedure that allows for

isolation of the different contributions to the uncertainty. In

particular, we assess constrained distributions for both the

forced change we should expect to occur in the real world

(absent internal variability) and the potential future we might

experience in the one realization of the real world that we

observe (including internal variability).

An implicit assumption when using emergent constraints is

that the real world will not behave drastically differently from

the model distribution (i.e., it will not deviate from the rela-

tionship between predictor and predictand by more than in-

dividual models do). This is an assumption that is difficult to

test. Williamson and Sansom (2019) describe a method where

this additional uncertainty can be incorporated. It remains,

however, challenging to quantify what this additional uncer-

tainty should be. Renoult et al. (2020) address this by testing

the sensitivity of the constraint to simply inflating the standard

deviation of the residuals of their regression fit by a factor of 2.

We have not performed such sensitivity tests here because we
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have no way of quantifying the problem. So, all of the con-

straints described above comewith the caveat that they assume

that the real world is interchangeable with the models in terms

of both the relationship between the predictor and the pre-

dictand and the magnitude of the additional sources of un-

certainty—assumptions that are very difficult to test. For the

constraints that were found to agree between CMIP5 and

CMIP6, we can at least take comfort in the fact that a different

group of models with upgraded physical parameterizations

and/or resolution do still obey the same relationships as their

predecessors.

8. Conclusions

Three previously proposed emergent constraints have been

tested in CMIP6 and a rigorous quantification of the con-

strained future projections they imply has been provided.

The SHJET constraint (section 4) relates a model’s SH

wintertime climatological jet position to the magnitude of its

future projected poleward shift. This constraint has now been

shown to be robust throughout CMIP3, CMIP5 and CMIP6,

although in CMIP6 it explains less variance than in CMIP5.

Nevertheless, it still provides a quantitatively useful constraint

on the future projected poleward shift of the SH westerlies in

this season and suggests that there is around an 83% chance

that it will be smaller than the mean shift projected by the

CMIP5 and CMIP6 ensembles combined (Fig. 5d). However,

the mechanism behind this constraint is still not well under-

stood (see the discussion in the online supplemental material).

The VWIND constraint, discussed in section 5, relates a

model’s response in eddymeridional wind over NorthAmerica

to the amplitude of its climatological, intermediate-scale, sta-

tionary waves in that region. This constraint was previously

shown to be robust in sensitivity experiments within a single

model by van Niekerk et al. (2017) and is also shown here to be

robust in CMIP6. However, this is a clear example where

model improvements have rendered this constraint less useful.

While, on average, the CMIP6 models still have too large a

stationary wave amplitude in this region, there are no longer as

many models with extremely large biases. As a result, the con-

straint no longer substantially constrains the future projections

beyond the range projected by the CMIP6 models themselves,

although it does still suggest a slightly smaller amplitude of

the meridional wind change over the U.S. Southwest than the

CMIP6 ensemble mean (Fig. 10c).

Extending this to quantify constrained projections on future

precipitation change over North America has revealed that,

over the U.S. west coast, uncertainties are too large for the

relationship between precipitation change and stationary

wave amplitude to effectively constrain future projections

(Figs. 12a–d). The CMIP5 relationship between stationary

wave amplitude and precipitation changes in this region were

being dominated by models with very large stationary wave

biases and, in CMIP6, now that models have improved, the EC

projections are not much more constrained than the CMIP6

distribution itself.

The final constraint we assessed was the CALP constraint,

discussed in section 6, which relates amodel’s representation of

the interannual correlation between ENSO and California

precipitation r(Niño-3.4, pr), to future trends in California

precipitation. In this example we find that there is considerable

uncertainty in the predictor r(Niño-3.4, pr) when assessed from
the short observational record, which encompasses a large

fraction of the model spread (Fig. 13a). Furthermore, we do

not find the correlation between historical r(Niño-3.4, pr) and
future projected California precipitation change to be robust in

either CMIP5 or CMIP6 (Figs. 13g and 13i).

Aside from providing an update on these three ECs, our aim

has been to provide a detailed description of methods that

can be used to adequately account for uncertainties when

constraining future projections, which may now be used to

scrutinize other existing and forthcoming ECs. To this end, the

analysis codes and methodological descriptions are all pro-

vided on github at www.github.com/islasimpson/ecpaper2020/.
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data required to reproduce the paper figures can be downloaded

from https://doi.org/10.5065/wz6y-5e82 and the processing and

analysis scripts are available at www.github.com/islasimpson/

ecpaper2020.

APPENDIX

Description of the Bayesian Hierarchical Model Method

In theOLS and TLS approaches, the linear regressionmodel

is fit by finding the parameters that minimize the residuals

given the data points that we have measured, albeit with dif-

ferent weighting of the errors in the predictor and predictand.

The Bayesian hierarchical model (BHM), on the other hand,

models the true values x and Dy (uncontaminated by internal

variability) based on x and Dy and their uncertainties, allowing

for correlation between the errors in x and Dy (rxDy) to be in-

corporated (McKinnon 2015). We assume that d is represented

by a normal distribution with zero mean and variance s2
d [i.e.,

d;N (0, s2
d)], so the regression parameters in theBHMarea,b,

ands2
d, and a joint probability distribution ofa,b, ands

2
d values is

determined, given the values of x and Dy, which we will denote

P(a, b, s2
djx, Dy).Wewill continue to use the notationP(XjY) to

denote the conditional probability of X, given Y, throughout.

Bayes’ theorem tells us that

P(a,b,s2
d, x,Dyjx,Dy)}P(x,Dyja,b,s2

d, x,Dy)P(a,b,s
2
d, x,Dy).

(A1)

Since x and Dy are independent of the regression parameters,

P(x,Dyja,b,s2
d, x,Dy)5P(x,Dyjx,Dy). (A2)

Furthermore, exploiting the identity P(A, B) 5 P(AjB)P(B),
the last term in (A1) can be written as

P(a,b,s2
d, x,Dy)5P(x,Dyja,b,s2

d)P(a,b,s
2
d), (A3)

and then exploiting the identity P(A, BjC) 5 P(AjB, C)

P(BjC) gives

P(x,Dyja,b,s2
d)5P(Dyjx,a,b,s2

d)P(xja,b,s2
d)

5P(Dyjx,a,b,s2
d)P(x) (A4)

and we further assume that P(x) is best represented by a nor-

mal distribution with mean mx and standard deviation d2x,

such that

P(x)}P(xjm
x
, d2x)P(mx

, d2x) (A5)

while

P(Dyjx,a,b,s2
d)}N (a1bx,s2

d). (A6)

So (A1) can be written as

P(a,b,s2
d,mx

, d2x, x,Dyjx,Dy)}
P(x,Dyjx,Dy)P(Dyjx,a,b,s2

d)P(xjmx
d2x)P(mx

, d2x)P(a,b,s
2
d),

(A7)

which is the joint posterior distribution of all unknowns:

a, b, s2
d, x, Dy, mx, d

2
x.

Conditional posteriors for a, b, s2
d, mx, and d2x can be de-

termined from (A7) by conditioning on all other variables,

aside from the one of interest.

We model the relationship between the errors in x and the

errors in Dy using a bivariate normal distribution

P(x,Dy)}
1

2ps
x
,s

Dy

exp

(
2

1

2(12 r
xDy

)

"
(x2 x)2

s2
x

1
(Dy2Dy)2

s2
Dy

2 r
xDy

(x2 x)(Dy2Dy)

s
x
s
Dy

#)
(A8)

which leads to

P(xjDy, x,Dy);N

"
x1 r

xDy

s
x

s
Dy

(Dy2Dy),s2
x 12 r2xDy

� �#
,

(A9)

P(Dyjx, x,Dy);N
�
Dy1 r

xDy

s
Dy

s
x

(x2 x),s2
Dy 12 r2xDy

� ��
,

(A10)

and use the following priors: P(a, b, s2
d)} 1/s2

d and P(mx, d
2
x)}

1/d2x (i.e., uniform priors on a, b, and mx and Jeffrey’s prior on s2
d

and d2x). This gives

P(aj�);N
��
�
i

Dy(i)2b�
i

x(i)

�
=N, s2

d=N

�
, (A11)

P(bj�);N

(
�i

x(i)[Dy(i)2a]

�i
x(i)

2
,

s2
d

�i
x(i)

2

)
, (A12)

P(s2
dj�); I G

�
N/2,�

i

[Dy(i)2bx(i)2a]2=2

�
, (A13)

P(m
x
j�);N

�
�
i

x(i)/N,s2
d=N

�
, (A14)

P(d2xj�);I G
�
N/2,�

i

[x(i)2m
x
]2=2

�
, (A15)

where I G (A, B) refers to an inverse gamma distribution with

shape parameter A and scale parameter B and we have used

the notation P(Xj�) to denote the probability ofX conditioned

on all other parameters.

Conditional posteriors for x and Dy can be determined

from (A7) by conditioning on Dy and x, respectively,

giving

P xjDy,a,b,s2
d,mx

, d2x, x,Dy
� 	

}N (V
x
C

x
,C

x
),

V
x
5
b(Dy2a)

s2
d

1

x2 r
xDy

s
x

s
Dy

(Dy2Dy)

s2
x(12 r2xDy)

1
m
x

d2x
,

C
x
5

"
b2

s2
d

1
1

s2
x(12 r2xDy)

1
1

d2x

#21

, (A16)
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P Dyjx,a,b,s2
d,mx

, d2x, x,Dy
� 	

}N (V
y
C

y
,C

y
),

V
y
5
bx1a

s2
d

1

Dy2 r
xDy

s
Dy

s
x

(x2 x)

s2
Dy(12 r2xDy)

,

C
y
5

"
1

s2
d

1
1

s2
Dy(12 r2xDy)

#21

. (A17)

Thus the full conditional posteriors are represented either by

normal distributions or inverse gamma distributions that can

be easily sampled. Probability distributions of a, b, s2
d,mx, d

2
x, x,

and Dy are obtained using a Markov chain Monte Carlo pro-

cedure via Gibbs sampling, whereby a random sample for each

of the unknowns is drawn from the conditional posterior distri-

butions [(A11)–(A15) and (A16)–(A17)] in turn.After 30 spinup

rounds of sampling, 1000 rounds of samples for each the

parameters is performed, giving 1000 (a, b, s2
d, d

2
x, x, and Dy)

combinations that are then used to provide constrained

projections by the methods described in section 3b.
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