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Abstract
Quantification of the sector-specific financial impacts of historical global warming represents a
critical gap in climate change impacts assessment. The multiple decades of county-level data
available from the U.S. crop insurance program—which collectively represent aggregate damages
to the agricultural sector largely borne by U.S. taxpayers—present a unique opportunity to close
this gap. Using econometric analysis in combination with observed and simulated changes in
county-level temperature, we show that global warming has already contributed substantially to
rising crop insurance losses in the U.S. For example, we estimate that county-level temperature
trends have contributed $US2017 27.0 billion—or 19%—of the national-level crop insurance losses
over the 1991–2017 period. Further, we estimate that observed warming contributed almost half of
total losses in the most costly single year (2012). In addition, analyses of a large suite of global
climate model simulations yield very high confidence that anthropogenic climate forcing has
increased U.S. crop insurance losses. These sector-specific estimates provide important quantitative
information about the financial costs of the global warming that has already occurred (including
the costs of individual extreme events), as well as the economic value of mitigation and/or
adaptation options.

1. Introduction

Although world governments have agreed to pursue
actions that curb future greenhouse gas emissions
and stabilize global temperature [1], large gaps exist
between the aggregate country-level commitments
and the rate of decarbonization that is necessary to
achieve the agreed upon climate goals [2]. A major
barrier to closing that gap is the question of whether
the benefits of achieving those climate goals exceed
the investment required to generate sufficiently rapid
greenhouse gas mitigation [3]. While there is a long
history of attempting to answer this cost-benefit
question (e.g. [4–7])—including a rapidly emer-
ging empirical literature quantifying the relationship
between climate variations and economic outcomes
(e.g. [8–10])—inquiry into the economic impacts
of global warming has primarily focused on future
changes in climate (e.g. [3, 11–13]). However, global

warming has already reached∼1.1 ◦C above the pre-
industrial baseline [14]. Financial impacts caused by
that historical warming are a critical source of addi-
tional insight, both for evaluating the economic value
of greenhouse gas mitigation, and for predicting the
costs associated with the additional climate change
that will occur even if the UN’s 1.5 ◦C or 2 ◦C target
is achieved.

There is now a robust literature attributing
numerous impacts to historical climate change (e.g.
[15]), including the individual extreme events that
account for a large fraction of climate- and weather-
related losses (e.g. [16, 17]). There is also grow-
ing interest in using attribution research to assign
responsibility for impacts, including financial losses
[18–22]. However, studies explicitly quantifying the
economic impacts of historical climate change have
focused primarily onmeasures of aggregate economic
activity [23, 24]. Relatively few attribution analyses
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have quantified sector-specific financial losses attrib-
utable to historical anthropogenic forcing (e.g. [25]),
particularly attribution of sector-specific financial
costs of individual events [26, 27].

Insured crop losses offer a potent opportunity
for that quantification [28]. Although the sensitiv-
ities of crop yields to climate have been thoroughly
studied (e.g. [29–31])—including the impacts of his-
torical warming [29, 32–35]—the financial losses
associated with these agricultural impacts remain
largely unquantified [10, 12, 36]. Studies analyzing
the impacts of climate change on crop yields provide
some implicit insight into the financial costs—and
can even be used to calculate financial implications
of production losses [36]—but their scope is limited
by the fact that they largely focus on a subset of key
crops [33, 36] or on individual growing regions [37].
In contrast, the indemnities claimed by U.S. farmers
and paid by the U.S. government under the federal
crop insurance program represent a direct measure of
financial losses across the full suite of crops grown in
theU.S. Further, becausemore than 80%of total agri-
cultural acreage is insured [38], crop indemnity data
are a representative measure of overall financial losses
in the sector. Finally, because U.S. taxpayers provide
billions of dollars in subsidies to the U.S. crop insur-
ance program [39], the burden of insured crop losses
extends far beyond the agricultural sector.

Data documenting individual claims are available
at the county level for the last three decades from the
U.S. Department of Agriculture [40]. We use these
county-level data to quantify the influence of vari-
ations in growing season temperature and precipit-
ation on annual U.S. insured crop losses. We then
use that empirical relationship to quantify counter-
factual U.S. insured crop losses for a world without
global warming, based on both observed county-level
temperature trends and a large suite of global climate
models. Using these counterfactuals, we quantify the
contribution of historical temperature change for
both total cumulative U.S. insured crop losses and the
most costly single year in the U.S.

2. Methods

2.1. Crop insurance data
We analyze county-level crop indemnities using the
‘Cause of Loss Historical Data Files’ from the United
States Department of Agriculture Risk Management
Agency (USDA RMA) [40], which have been used
in previous climate-focused analyses [10, 28, 41].
Indemnity data are provided by USDA RMA at the
county level for each ‘crop year’. We sum all indem-
nity entries for each year in each county, creating
county-level annual time series of total crop indem-
nities from 1991 to 2017. We then convert the total
indemnity values in each year to 2017 dollars using
the ratio between the 2017 CPI and the CPI in each
respective year, yielding inflation-adjusted total crop

indemnities for each county in each year from 1991
to 2017. (Approximately 20% of county-years do not
have indemnity claims, and our results are robust
to different options for including the county-years
without claims; table S1.)

2.2. Climate observations
We calculate county-level seasonal climate variables
using the 4 km daily maximum temperature and
daily precipitation data from gridMet [42]. In order
to generalize our specification across the broad suite
of crops grown throughout the U.S., we focus our
analysis on standardized climate conditions during
the core April to October (Apr–Oct) growing sea-
son. For each gridMet climate variable, we average
the values that occur between 1 April and 31 Octo-
ber of each year, generating an Apr–Oct seasonal-
mean value for each year at each grid point. We then
aggregate the Apr–Oct seasonal-mean values from
the native 4 km grid to the county-level, generating
time series of Apr–Oct temperature and precipita-
tion in each county in each year. Finally, for each
county-level time series, we convert the annual values
to z-scores, yielding annual time series of standard-
ized Apr–Oct temperature and precipitation in each
county in each year. This standardization allows us to
compare counties across the U.S., which span a broad
range of climate regimes, and in which many differ-
ent types of crops with varying absolute temperature
thresholds are grown.

Because many U.S. counties cover large areas
and/or contain varied land use types, a key ques-
tion for our regression model formulation (which is
described in the following section) is whether vari-
ation in county-level temperature is representative of
variation in temperature in the areas of the county
where crops are grown. To test this, we calculate the
Pearson correlation between the standardized tem-
perature time series at each 4 km grid point and the
standardized temperature time series for the county
in which each respective 4 km grid point falls. We
find that 98.1% of grid points have correlation >0.9,
93.4% of grid points have correlation >0.95, and
62.0% of grid points have correlation >0.99. We thus
conclude that variation in county-level standardized
temperature is representative of variation in stand-
ardized temperature of the areas of the county where
crops are grown.

2.3. Panel regression
We use panel regression with fixed effects to calcu-
late the relationship between temperature, precipita-
tion and crop indemnities. As described in detail for
a related setting in Burke et al [11], the fixed effects
regression framework allows us to isolate the effect of
temperature and precipitation from (a) time invari-
ant factors that differ between counties and could
affect indemnities (e.g. different levels of insurance
uptake or different average crop mix), (b) abrupt

2



Environ. Res. Lett. 16 (2021) 084025 N S Diffenbaugh et al

events that introduce shocks across units and could
affect indemnities (e.g. national or global pricemove-
ments, or changes to crop insurance programs), and
(c) slowly changing factors that are specific to each
state and could affect indemnities (e.g. state-specific
trends in insurance uptake, cropping patterns, and/or
average temperature or precipitation).

Of the many studies that have followed Burke
et al [11], our general implementation in this study
is closest to Davenport et al [25], but in this case
we analyze the relationship between county-level
climate variations and county-level crop indemnit-
ies (rather than country-level temperature variations
and country-level aggregate economic growth in
Burke et al [11] or state-level precipitation variations
and state-level flood damages in Davenport et al
[25]). To do so, we fit a new panel regression model
that is distinct from those used in previous studies.

Our main specification tests quadratic relation-
ships with temperature and precipitation:

ln[Yit] = β1Tit +β2T
2
it +β3Pit +β4P

2
it +µi

+ υt + θst+ εit

where Yit is the annual inflation-adjusted total crop
indemnities (in $US2017) in county i in year t; Tit is
the Apr–Oct seasonal-mean standardized temperat-
ure anomaly in county i in year t; Pit is the Apr–
Oct seasonal-mean standardized precipitation anom-
aly in county i in year t; µi are county-fixed effects; υt

are year-fixed effects; θst are state-specific linear time
trends; and εit is an error term accounting for arbit-
rary serial correlation within counties over time, as
well as within a state in a given year.

In essence, this approach quantifies whether
indemnities in a given county are higher or lower
in a year in which temperature or precipitation is
higher or lower than average for that county, after
accounting for any common differences in either
weather or indemnities that are shared with other
counties in that year. Given the important role that
non-climatic factors such as exposure play in influ-
encing disaster losses over space and time (e.g. [43]),
and the risk that we could conflate these differences
in exposure with differences in warming, we visu-
ally verify that the county- and year-fixed effects and
state-specific time trends in our regression model
help to account for average differences and long-term
trends at the unit level. To do so, we compare the
raw county-level time series of total crop indemnit-
ies (figure S1 (available online at stacks.iop.org/ERL/
16/084025/mmedia)) with the time series of county-
level indemnities after taking out the fixed effects and
state-specific time trends (figure S2). This compar-
ison suggests that the controls in our panel regression
are indeed accounting for common trends in indem-
nities caused by changes in exposure or other factors.

We conduct a number of analyses to test the
robustness of the results of our main panel regression
model:

First, we test alternative specifications of the
temperature and precipitation relationships. These
alternatives include both binned regression and
higher-order polynomial relationships (figure 2), as
well as specifications that interact temperature and
precipitation (tables S1–S3), which together support
the use of the quadratic specification in the main
regression model (figure 2).

Second, we follow previous studies (e.g. [3, 11, 23,
25, 44]) and calculate bootstrapped confidence inter-
vals of regression parameters, sampling counties with
replacement (1000 samples). We also test the sensit-
ivity of the results to different treatments of county-
years in which no indemnities were reported, and
find the results to be robust (figure S3 and table S1);
in calculating the main model, we remove county-
yearswithout indemnities (figure 2).We also compare
the regression calculated for indemnities for all crops
(which total $US2017 140.5 billion) with the regres-
sion calculated just for indemnities for corn (which
at $US2017 49 billion is the single largest source of
indemnities), and find very similar relationships for
both the binned and quadratic models (figure S4).

Finally, we use a related ‘long differences’
approach to shed additional light on whether crop
losses have responded to variation in longer term
(multi-decadal) trends in temperature [34]. Instead
of comparing counties to themselves over time as
temperature and precipitation fluctuate, as in the
panel approach, this long differences approach com-
pares whether crop losses accelerated more quickly
in counties that warmed more quickly over the entire
study period. To implement this approach, we first
separately estimate the linear trend in crop losses,
temperature, and precipitation for each county in
which indemnities were reported for all years in the
1991–2017 period. We then regress trends in crop
losses on trends in temperature and precipitation.
These regressions have much smaller sample sizes
than our panel regressions, as the time series of data
in each county is collapsed to one data point.

2.4. Quantifying the impacts of observed long-term
change in growing-season temperature on total
crop indemnities
As in previous studies (e.g. [17, 25]), we quantify
the influence of the long-term climate trend on indi-
vidual event magnitudes. We conduct this analysis
using the standardized temperature time series that
was used in calculating the panel regression. For each
county, we create a counterfactual temperature time
series (Tcounterfactual) by removing the 1991–2017 lin-
ear trend from the actual standardized temperature
time series (Tactual). Then, for each county i in each
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year t, the temperature difference (∆T) contributed
by the historical temperature trend is equal to the dif-
ference between the actual and counterfactual stand-
ardized temperature:

∆Tit = Tactual[it] − Tcounterfactual[it].

This temperature difference ∆T can be used to
calculate the contribution of the long-term county-
level temperature trend to the actual crop indemnit-
ies in each year. To calculate the difference in Y with
respect to T, we differentiate the regression equation,
which yields:

∂ln [Yit]/∂Tit = β1 + 2β2Tit

∂ln [Yit] = [β1 + 2β2Tit] ∂Tit.

We then use the equation for the difference in Y
with respect to T to calculate the impact of the actual
temperature in a given year relative to the counter-
factual temperature that would have occurred in the
absence of the historical temperature trend:

ln
[
Yactual[it]

]
−ln

[
Ycounterfactual[it]

]
= [β1 + 2β2Tit] ∆Tit

ln
[
Yactual[it]/Ycounterfactual[it]

]
= [β1 + 2β2Tit] ∆Tit

Yactual[it]/Ycounterfactual[it] = e([β1+2β2Tit]∆Tit).

Hence, for a given county i in year t, the coun-
terfactual crop indemnities (Y counterfactual) that would
have occurred in that year in the absence of the his-
torical temperature trend can be calculated from (a)
the actual indemnities that occurred in that county in
that year, (b) the actual standardized Apr–Oct tem-
perature anomaly that occurred in that county in
that year, (c) the counterfactual standardized Apr–
Oct temperature anomaly for that county in that
year, and (d) the values of β1 and β2 calculated
from the panel regression across all counties in all
years:

Ycounterfactual[it] = Yactual[it]/e
([β1+2β2Tit]∆Tit).

From these counterfactual indemnities, we cal-
culate the impact of the county-level temperature
trend for each county in each year by taking the
difference between the actual and counterfactual
indemnities:

Impactit = Yactual[it] − Ycounterfactual[it].

We calculate the annual national-level impact by
summing the annual county-level impacts in each
year.We calculate the cumulative county-level impact
for each county by summing the respective annual
county-level impacts in all years from 1991 to 2017.
Finally, we calculate the cumulative national-level

impact by summing the annual impacts across all
counties in all years from 1991 to 2017.

To quantify uncertainty in the impacts of temper-
ature change arising from uncertainty in the regres-
sion coefficients, we repeat the calculation of the
counterfactual indemnities for each of the 1000 boot-
strap iterations of the panel regression. We then cal-
culate the percentile values across the 1000 impact
calculations.

2.5. Global climate model analysis
Given the strong influence of climate variability on
regional and sub-regional temperature trends (e.g.
[17, 45]), any county’s 1991–2017 temperature trend
reflects a mix of both ‘external’ anthropogenic for-
cing and ‘internal’ climate system variability. This
ambiguity between the forced response and internal
variability is particularly acute at small spatial scales
[17, 45, 46], such as the county-scale analyzed here,
and can cause the trend in temperature observations
to be non-linear (e.g. [47]). In addition, the 1991–
2017 trend only reflects warming in the recent dec-
ades, and does not capture warming caused by green-
house gas emissions over the full industrial era (i.e.
since the mid-19th century).

Given these limitations of the observations-based
counterfactual approach, we also use a suite of climate
model simulations from the Coupled Model Inter-
comparison Project (CMIP5) [48] to generate coun-
terfactual temperature time series that reflect uncer-
tainty in the response of county-level temperature
to industrial-era anthropogenic forcing. The CMIP5
Historical simulations use anthropogenic and nat-
ural climate forcings through the year 2005, while the
Natural simulations use only natural climate forcings
through the year 2005. The influence of anthropo-
genic forcings can thus be calculated by taking the dif-
ference, or ‘delta’, between the respective Historical
and Natural realizations of each climate model. The
distribution of Historical-minus-Natural delta values
across the CMIP5 realizations reflects uncertainty in
the climate response to anthropogenic forcings as well
as the influence of internal climate system variabil-
ity, allowing us to quantify uncertainty in the county-
level temperature response that is not captured by
removing the linear trend from the observational time
series.

We use 36 paired Historical and Natural climate
model realizations from CMIP5. For each pair, we
first interpolate the climate model temperature data
to the gridMet observational grid. We then calcu-
late the county-level Apr–Oct mean temperature for
the IPCC baseline period (1986–2005) in the respect-
ive Historical and Natural climatemodel simulations,
and calculate the county-level Apr–Oct ‘delta’ (His-
torical minus Natural value) in standardized units,
thereby normalizing for structural biases in the GCM
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simulation. Then, for each county, we apply that
county’s simulated standardized temperature delta
to that county’s observed standardized temperature
anomaly in each Apr–Oct season to create a counter-
factual realization for a world in which there had been
no anthropogenic climate forcing.

We repeat the calculation of counterfactual crop
indemnities for each of the 36 GCM counterfactual
temperature realizations, as described above for the
single detrended observational counterfactual tem-
perature time series. In order to isolate uncertainty
contributed by differences in the GCM-simulated
temperature delta, we use the main panel regression
calculated from the historical observations to calcu-
late the counterfactual crop indemnities for each of
the 36 GCM counterfactual temperature realizations.

3. Results

Cumulative national-level crop indemnities totaled
$US2017 140.5 billion from 1991 to 2017 (figure 1(A)).
There have been substantial positive trends in U.S.
crop indemnities over that period, with the largest
trends exceeding $US2017 2000 000 yr−1 in the Cent-
ral Valley of California (figure 1(B)). Many counties
in the western U.S. exhibit trends that exceed $US2017
100 000 yr−1 (including many of the agricultural
counties in California and eastern Washington), as
do a large swath of counties in the central U.S.
(including much of the ‘Corn Belt’, the Great Plains,
and the Mississippi River Valley). Within this cent-
ral region, many counties exhibit trends exceeding
$US2017 500 000 yr−1, and a small subset exhibit
trends exceeding $US2017 1000 000 yr−1. County-level
trends that exceed $US2017 25 000 yr−1 are relat-
ively common throughout the eastern U.S., includ-
ing areas of the Atlantic Coast that exceed $US2017
100 000 yr−1.

Cross-sectional comparison shows high concen-
tration of annual indemnities in years with Apr–
Oct seasons that are warm and dry, along with a
secondary peak in years with Apr–Oct seasons that
are wet and cool (figure 2(A)). Apr–Oct temperat-
ure increased in most U.S. counties over the 1991–
2017 period (figure 1(C)). Although there is sub-
stantial noise, there is a general weighting towards
larger increases in indemnities in counties with
higher rates of warming (figure 2(B)). Most of the
eastern U.S. has exhibited positive trends in Apr–
Oct precipitation, while most of the western U.S.
has exhibited little change (figure 1(D)). As a res-
ult, there is even greater noise in the relation-
ship between county-level trends in crop indem-
nities and trends in Apr–Oct precipitation, with
the largest trends in crop indemnities spanning
both positive and negative trends in precipitation

(but weighted towards positive precipitation trends;
figure 2(B)).

To further isolate the influence of climatic vari-
ations from other potentially confounding time
invariant or time-trending variables, we estimate
panel fixed effects regressions that exploit within-
county variation in both climate and crop losses—
an approach that has been used widely in the climate
impacts literature (e.g. [9, 11–13, 25, 44, 49]). We cal-
culate both a binned regression model and different
polynomial models, all of which suggest a significant
quadratic relationship between the natural logarithm
of total crop indemnities and standardized temper-
ature and precipitation anomalies (figure 2(C) and
table S1).

Both the binned and polynomial regressions
indicate that crop indemnities increase sharply in
conjunction with anomalously high or low temperat-
ure and/or precipitation (figure 2(C)). We stress that
these regression coefficients account for long-term
trends and time invariant factors within each unit,
as well as abrupt events that introduce shocks exper-
ienced across units. Therefore, although generated
using fundamentally different variation in the data,
the results of the panel regression (figure 2(C)) agree
qualitatively with the cross-sectional relationship
between U.S. crop indemnities and county-level tem-
perature and precipitation anomalies (figure 2(A)).

As yet another check on our results, we adopt a
‘long differences’ approach [34] and estimate whether
counties that experienced larger trends in temperat-
ure or precipitation over our study period also exper-
ienced larger trends in indemnities. An advantage of
this approach is that it allows direct identification
of the impact of longer-run trends in climate, rather
than inferring responses to these trends from annual
fluctuations (as in the panelmodel). A substantial dis-
advantage relative to the panel model is a much smal-
ler sample size, with decades of annual observations
collapsed to one observation (i.e. an estimated trend)
over the period. We find that long difference estim-
ates of the effect of temperature trends on indemnities
are slightly larger than panel estimates but much less
precisely estimated (table S3), and confidence inter-
vals on long difference estimates contain the estim-
ates from panel models (tables S2 and S3). We inter-
pret these results as further evidence that increases in
temperature, either at an annual or decadal time scale,
increase insured crop losses in the U.S.

Given this evidence, we use our panel regression
estimates (figure 2(C)) to quantify the impact of long-
term county-level temperature trends on historical
county- and national-level crop indemnities, for both
individual years and aggregated over the 1991–2017
period (see methods). Our main estimate (i.e. using
the quadratic model) is that county-level temperat-
ure trends have contributed $US2017 27.0 billion—or
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Figure 1. (A) Total crop indemnities accumulated in each county from 1991–2017 (expressed in 2017 dollars using the consumer
price index, or CPI). The total CPI-adjusted indemnities across all counties exceed $140 billion in 2017 dollars. (B) The
1991–2017 time trend in county-level CPI-adjusted indemnities. (C) The 1991–2017 time trend in mean county-level
daily-maximum temperature for the April–October season. (D) The 1991–2017 time trend in mean county-level daily
precipitation for the April–October season.

19%—of the total national-level crop indemnities
for 1991–2017 (figure 3). The main estimate of the
contribution of county-level temperature trends to
county-level accumulated indemnities exceeds 20%
for numerous counties throughout the U.S., and
exceeds 30% for some counties in the central U.S.
(figure 3(B)).

The crop indemnities that occurred in 2012
($US2017 18.6 billion) were the largest of the past
three decades, and represent >13% of the 1991–2017
U.S. total (figure 4). Much of the U.S. experienced
an intense drought in 2012 that was initiated by
severe precipitation deficits and amplified by what
was at the time the hottest summer on record in the
U.S. (e.g. [50]). Areas exhibiting large crop indem-
nities (figure 4(B)) generally experienced both warm
temperature anomalies and dry precipitation anom-
alies for the Apr–Oct season (figure 4(A)), includ-
ing a large swath of the central U.S. with temperature
reaching >2 standard deviations above the mean and
precipitation reaching >2 standard deviations below
the mean (figure 4(A)). Our main estimate is that
long-term county-level temperature trends accoun-
ted for $US2017 8.8 billion—or 47%—of the total
U.S. crop indemnities in 2012 (figure 4(C)), with the
impact of long-term temperature trends accounting
for >50%of 2012 indemnitieswithinmany individual
counties in the central U.S. (figure 4(B)).

Although these estimates reflect uncertainty in the
relationship between temperature, precipitation and
crop indemnities (figure 2(C)), they rely solely on
the observed historical temperature trend, and there-
fore do not reflect uncertainty in the response of
county-level temperature to anthropogenic forcing.
Because the time-evolution of county-level temper-
ature reflects both the response to ‘external’ anthro-
pogenic forcing and ‘internal’ climate system vari-
ability, we repeat our counterfactual analysis using
the CMIP5 global climate models, which simulate the
physical response of the climate system to anthropo-
genic forcing within the context of internal variability
(see Methods).

We find that the median national-level impact
of temperature change calculated from the CMIP5
GCMs ($US2017 30.0 billion and 7.9 billion for 1991–
2017 and 2012, respectively) is of a similar mag-
nitude as the median national-level impact calcu-
lated from observed county-level temperature trends
(figures 3(C) and 4(C)). In contrast, the range
in the estimated temperature impact across the
GCMs substantially exceeds the range across the
regression bootstraps for both 1991–2017 and 2012
(figures 3(C) and 4(C)), highlighting the uncertainty
in the response of county-level temperature to his-
torical anthropogenic forcing. However, despite this
uncertainty in magnitude, the estimated temperature
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Figure 2. (A) Cross-sectional comparison of the distribution of county-level crop indemnities for 1991–2017. Colors show the
percentage of total 1991–2017 CPI-adjusted indemnities across all counties that fall in each standardized April–October
temperature-precipitation bin. (B) Scatterplots of county-level 1991–2017 trends in CPI-adjusted crop indemnities versus
county-level trends in April–October temperature (left) and precipitation (right). (C) Results of the panel regression with fixed
effects, which controls for unit-specific fixed effects and time trends to isolate the influence of variations in individual climate
variables from other confounding variables (see methods). We calculate a number of different specifications of the panel
regression, including a binned model (left) and different polynomial models (right). (For the binned model, y-axis values are
expressed relative to a bin with climate anomalies >2 standard deviations below the mean, and the rightmost bin includes climate
anomalies exceeding 2.5 standard deviations above the mean.) We use the quadratic model (right) as our main panel regression
model; alternative specifications are shown in tables S1–S2 and figures S3–S5.
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sum of total 1991-2017
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Figure 3. (A) The accumulated impact of the 1991–2017 trend in county-level temperature on total crop indemnities
accumulated in each county from 1991–2017. The contribution of the 1991–2017 county-level temperature trend in each year is
calculated using the temperature coefficients calculated using the panel regression with fixed effects (figure 2(C)). (B) The
fraction of the total accumulated crop indemnities contributed by the 1991–2017 trend in county-level temperature.
(C) Comparison of the range of estimates of the impact of 1991–2017 county-level temperature trends on accumulated
national-level crop indemnities (pink) with the range of estimates of the impact of anthropogenic forcing calculated from the
CMIP5 global climate models (purple).

impact exceeds 10% of actual indemnities in 94% and
97% of GCMs for 1991–2017 and 2012, respectively.
Further, the estimated temperature impact is >0 in
100% of GCMs for both 1991–2017 and 2012, leading
to high confidence [51] in the conclusion that anthro-
pogenic warming has increased U.S. crop insurance
losses.

4. Discussion

There is ample evidence that the increasing occur-
rence of severe heat has impacted a variety of nat-
ural and human systems, including agricultural crops
(e.g. [29, 31, 33, 52–54]). However, there has been
much less research on how historical warming has
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Figure 4. (A) Standardized county-level April–October precipitation (left) and temperature (right) anomalies for 2012. (B) The
impact of the 1991–2017 trend in county-level temperature on 2012 county-level crop indemnities, expressed as the magnitude of
impact (left) and the fraction of actual indemnities (right). (C) Comparison of the range of estimates of the impact of 1991–2017
county-level temperature trends on 2012 national-level crop indemnities (pink) with the range of estimates of the impact of
anthropogenic forcing calculated from the CMIP5 global climate models (purple).

influenced the financial costs of those crop impacts.
In particular, although it is possible to infer potential
financial costs from estimated yield impacts [36], the
existing literature on yield impacts has not spanned
the full range of crops grown across theU.S. In analyz-
ing indemnity data that span >80% of cultivated area
and the full suite of U.S. agricultural crops, we find
that (a)most indemnities occur in years with growing
seasons that are both dry and warm (figure 2(A)), (b)
panel regression identifies strongly significant quad-
ratic relationships with both standardized temper-
ature and standardized precipitation (figure 2(C)),
and (c) a substantial fraction of historical indem-
nities have been contributed by historical warming
(figure 3), including during one of the U.S.’s most
severe drought years (figure 4).

Together, these results suggest that global
warming has contributed substantially to rising
crop indemnities, including increasing the finan-
cial impacts caused by drought. More broadly, these
results suggest that continued warming is likely to
have substantial sector-wide financial costs that can
be expected to increase non-linearly with progress-
ively more extreme temperature departures. As stated
above, the fact that the U.S. crop insurance program
is heavily subsidized by U.S. taxpayers means that
these costs are felt far beyond the agricultural sector.

Our analysis could be refined with a number of
more subtle implementations of the panel regres-
sion. For example, regional differences in the relation-
ships between temperature, precipitation and crop
indemnities can be quantified using groupings of

9



Environ. Res. Lett. 16 (2021) 084025 N S Diffenbaugh et al

different states within the U.S. (e.g. [25, 44]). We find
that the overall pattern of a quadratic relationship
with temperature largely holds for regional group-
ings (figure S5). The Midwest states—which con-
tain a large fraction of the country’s heavily cultiv-
ated counties—most closely resemble the U.S.-wide
model. The Pacific Coast states exhibit the greatest
uncertainty, which is consistent with the region’s
widespread irrigation and year-round growing sea-
sons. There is also regional variation in the relation-
ship with negative standardized temperature anom-
alies, with the Midwest states showing the strongest
relative increase in damages from cold Apr–Oct
seasons.

In addition, while our specification uses stand-
ardized temperature and precipitation for the core
U.S. growing season in order to be generalizable
across the full suite of climate regimes and crops
grown within the U.S., our emphasis on standard-
ized seasonal conditions presents some limitations.
First, climate anomalies outside of this core grow-
ing season can impact the U.S. agricultural sec-
tor, particularly in the warmer regions with year-
round growing seasons, as well as for high-value
perennial crops (e.g. [55, 56]). Second, daily- and
hourly-scale extremes can have non-linear impacts,
particularly for crop-specific absolute temperature
thresholds (e.g. [49, 55, 57]). One of the clearest non-
linear responses to absolute temperature identified in
the literature is for corn [49]. Our analysis suggests
that the relationship with standardized seasonal tem-
perature is very similar between total crop indem-
nities and corn indemnities (figures 2 and S4), and
between total crop indemnities in the U.S. and total
crop indemnities in the Midwest region (which is
the major corn production region within the U.S.)
(figures 2 and S5). However, it is possible to quantify
the relationship between daily-scale absolute temper-
ature and crop indemnities [10, 28], which would
enable exploration of potential impacts from the
changes in shorter-duration extreme hot and cold
events that have been documented over the U.S. (e.g.
[17, 58]). Further, whereas our analysis only quan-
tifies the contribution of historical changes in tem-
perature to historical crop indemnities, changes in
extreme precipitation have contributed substantially
to increasing costs of flooding in the U.S., which
include crop losses [25].

The regional variations in the panel regression
(figure S5) and the potential for sensitivity to shorter-
duration extremes have implications for quantify-
ing the contribution of historical warming to the
financial costs of individual extreme climate events.
This is an important consideration given growing
efforts to assign legal liability for the impacts of
global warming [18–22]. Our results suggest that—
as with methods for testing the influence of anthro-
pogenic forcing on individual extreme climate events
(e.g. [17, 22])—care should be taken to customize

damage-attribution frameworks to individual sec-
tors, regions and events, including when quantify-
ing empirical relationships with historical climate
variations and when accounting for climate model
biases.

5. Conclusions

There has been ∼1.1 ◦C of global warming above
the pre-industrial baseline [14]. The magnitude of
this historical warming offers an opportunity for
empirical analyses to quantify the economic impacts
associated with anthropogenic climate change. For
example, ‘bottom up’ quantification of historical
sector-specific impacts can complement existing ‘top
down’ estimates of aggregate economic impacts when
evaluating the value of achieving different policy
goals, such as those in the UN Paris Agreement (e.g.
[3]). In addition, even if the UN Paris goals are
met, there will still be additional global warming
beyond what has already occurred. Quantification
of historical sector-specific impacts can complement
existing ‘bottom up’ assessments of future economic
damages (e.g. [13]) when evaluating both the costs
associated with additional warming and the value
of investing in adaptation measures to avoid those
costs.

Our results—using either the observed temperat-
ure trend or a large suite of global climate models—
suggest that the global warming that has already
occurred has contributed substantially to rising crop
insurance losses in the U.S. This includes a main
estimate of ∼$27 billion in total losses from rising
temperatures over the past three decades, including
almost half of the $18.6 billion in losses in 2012. Given
the rising frequency and magnitude of disaster losses
(e.g. figure 1(B); [25, 26, 59–61]), the scale of this
estimate suggests that the lower levels of global warm-
ing agreed upon in the UN Paris Agreement are likely
to yield substantial savings in the form of avoided
damages. Further, the frequency of extreme condi-
tions such as those that occurred in 2012 are pro-
jected to at least double within the 2 ◦C warming
target (e.g. [62]), suggesting that financial damages
from crop losses are likely to grow substantially even
if the UN Paris goals are achieved. However, it is pos-
sible that investments in adaptation could increase
tolerance to the hot, dry conditions that dominate
U.S. crop indemnities (e.g. [34, 52, 54, 62]). Our
estimates of the contribution of historical temperat-
ure change toU.S. insured crop losses can thus help to
quantify the value of both mitigation and adaptation
options.
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