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Precipitation extremes have increased across many regions of the
United States, with further increases anticipated in response to
additional global warming. Quantifying the impact of these pre-
cipitation changes on flood damages is necessary to estimate the
costs of climate change. However, there is little empirical evidence
linking changes in precipitation to the historically observed in-
crease in flood losses. We use >6,600 reports of state-level flood
damage to quantify the historical relationship between precipita-
tion and flood damages in the United States. Our results show a
significant, positive effect of both monthly and 5-d state-level pre-
cipitation on state-level flood damages. In addition, we find that
historical precipitation changes have contributed approximately
one-third of cumulative flood damages over 1988 to 2017 (primary
estimate 36%; 95% CI 20 to 46%), with the cumulative impact of
precipitation change totaling $73 billion (95% CI 39 to $91 billion).
Further, climate models show that anthropogenic climate forcing
has increased the probability of exceeding precipitation thresholds
at the extremely wet quantiles that are responsible for most flood
damages. Climate models project continued intensification of wet
conditions over the next three decades, although a trajectory con-
sistent with UN Paris Agreement goals significantly curbs that in-
tensification. Taken together, our results quantify the contribution
of precipitation trends to recent increases in flood damages, ad-
vance estimates of the costs associated with historical greenhouse
gas emissions, and provide further evidence that lower levels of
future warming are very likely to reduce financial losses relative to
the current global warming trajectory.

precipitation | flooding | climate change

Flooding is one of the most costly natural hazards, causing
billions of dollars in damage each year (1). Both the total cost

of flood-related damages and the frequency of “billion-dollar
disasters” have been growing over time (2–4) (Fig. 1A). Simul-
taneously, extreme, short-duration precipitation has been increasing
in many areas (5–7). Many historical trends in precipitation
intensity—including of individual extreme events—have been at-
tributed to climate change (8–11), and continued global warming is
very likely to yield further increases in extreme precipitation
(12–15). Quantifying the impact of these precipitation changes on
flood damages is a critical step toward evaluating the costs of cli-
mate change and informing adaptation and resilience planning (16).
However, the effect of changes in precipitation on historical

flood damages—and the potential attribution of these damages
to anthropogenic climate change—remains poorly quantified
(17, 18). Such attribution requires isolating the impact of
changes in precipitation from changes in other factors such as
exposure and vulnerability, as well as from changes in reporting
of damages. Previous studies have argued that increases in ex-
posure (e.g., increases in property values or the number of
structures) could explain most or all trends in disaster losses
(19–22). While much of the research on trends in the cost of
flood damage has been conducted at the national scale (2, 4, 19,
20), both the processes that cause damaging precipitation and
the factors that control exposure and vulnerability occur at

smaller spatial scales. Analyzing the national precipitation trend
is thus not sufficient to understand historical drivers of flood
damage, which result from regionally varying trends in flood
hazard, exposure, and/or vulnerability. As a result, there remains
critical uncertainty in the contribution of historical precipitation
trends to the observed national-level increase in flood damages.
“Bottom-up” flood risk assessments (23–25)—which integrate

higher-resolution socioeconomic and flood hazard information—
can provide greater detail, but are often limited in temporal and
geographic extent. Further, these approaches may require as-
sumptions about the relationship between flood hazard and
damage that cannot be easily verified. For example, existing flood
depth–damage curves are often poor predictors of observed flood
damage (26) but are commonly used in flood risk assessments.
The attribution of historical precipitation trends also becomes
more uncertain at finer spatial scales because of the progressively
stronger influence of climate variability (27), particularly over the
United States, where there is uncertainty in the signal-to-noise ratio
of mean precipitation change during the historical period (17).
Here we quantify the impact of historical global warming on

flood damages by combining 1) empirical approaches that inte-
grate historical flood damages and precipitation at the subna-
tional scale, 2) an analysis of historical changes in precipitation,
and 3) ensemble climate model simulations that quantify the
contribution of anthropogenic forcing to historical and future
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precipitation change within the context of climate variability (SI
Appendix, Text).
We use historical observations from 1988 to 2017 to model the

relationship between precipitation and flood damages at the
state-month level using fixed-effects panel regression analyses.
We control explicitly for changes in income in each state, and
include fixed effects that account for 1) year-to-year variations in
precipitation and flood damages within each state and 2) state-
specific seasonality in precipitation and flooding. In essence, we

compare the effect of a relatively wet month in one state with a
relatively dry month in the same calendar month and state, while
accounting for year-to-year changes in average flood damage in
that state. Over shorter (i.e., monthly or submonthly) timescales,
variations in precipitation within each state are plausibly un-
correlated with variations in exposure or vulnerability, meaning
that the regression analyses isolate the effect of a precipitation
anomaly from other confounding variables that also affect
flood damages.

Results and Discussion
We find a significant, positive relationship between monthly
precipitation and flood damages, with a 1-SD increase in the
monthly precipitation anomaly corresponding to a >3-fold in-
crease in flood damages (Fig. 1B). Variation in monthly, state-
level precipitation (after accounting for state-month and state-
year fixed effects) explains 21% of the observed variation in
monthly flood damages. The log-linear response suggests expo-
nential growth in flood damages for a given increase in monthly
precipitation, and we find a similar shape and magnitude of re-
sponse using either a quadratic or nonparametric binned model
(Fig. 1B). We also show that the presence of reporting errors in
the data (such as missing damages) is unlikely to cause an
overestimation of the effect of precipitation on flood damage (SI
Appendix, Text and Fig. S1).
Although months with flood damages occur at a range of

precipitation anomalies, the largest damages primarily occur at
precipitation anomalies >2 SDs (Fig. 1B). As expected, the slope
of the relationship is flatter across negative monthly precipita-
tion anomalies when using a nonlinear functional form. Smaller
flood damages do occur during months with negative statewide
precipitation anomalies (Fig. 1B), possibly due to lagged effects
from snowmelt, precipitation in adjacent states, or short-
duration and/or localized precipitation during months that are
relatively dry at the state-month scale. (We include additional
models to test for some of these effects, as described below.)
Given the range of temporal and spatial scales at which

flooding occurs, we compare our primary monthly, state-level
regression model with regression models that use shorter- or
longer-duration precipitation, or precipitation over large water-
sheds that span multiple states. Monthly maximum 5-d precipi-
tation has a positive effect on monthly flood damages, but the
effect is smaller compared with that of total monthly precipita-
tion (Fig. 1C). Using a lagged precipitation model, we find that
precipitation in previous months has a positive effect on flood
damages (SI Appendix, Fig. S2A) but that these effects are much
smaller than the effect of the current-month precipitation. Fur-
ther, although there are additional effects from precipitation that
occurs out-of-state (SI Appendix, Fig. S3), these effects are small
compared with that of within-state precipitation. Combined,
these analyses indicate that results based on the state-month
regression are consistent with models that account for the ef-
fects of shorter- or longer-duration precipitation, or large-scale
flooding processes.
We do find regional differences in the magnitude of the effect

of monthly precipitation on flood damages (Fig. 1C), reflecting
both regional differences in the conditions creating flood hazards
(e.g., the type of weather events associated with extreme pre-
cipitation, and the primary flooding processes) and regionally
specific patterns of exposure and vulnerability (e.g., patterns of
land use and development). Additionally, some regions show
seasonal variations in the effect of precipitation on flood dam-
ages (Fig. 1D). For example, there are smaller effects of pre-
cipitation on flood damages during the winter (December
through February) season in the Northern Rockies, Upper
Midwest, and Northeast regions. This result could reflect the fact
that these cold regions receive snow in the winter, which would
not have the same immediate impact on flooding as rain during

A

C

D

B

Fig. 1. Effect of state-level precipitation on flood damages. (A) Historical
state-level trends in monthly flood damages. The nine National Centers for
Environmental Information (NCEI) climate regions are outlined in dark gray:
Northwest (NW), West (W), Southwest (SW), Northern Rockies and Plains
(NR), South (S), Upper Midwest (UM), Central (C), Northeast (NE), and
Southeast (SE). (B) Relationship between normalized flood damages and
monthly precipitation at the state level using linear (blue line), quadratic
(gray line), and binned (red line) models. Shading indicates the 95% CI es-
timated by bootstrapping states. Response functions are centered at mean
monthly precipitation (0.04 SD) and mean log-normalized damage (1.8).
Histograms show the distribution of monthly precipitation anomalies across
all state-months (blue), the distribution of monthly precipitation anomalies
during months with flood damage (light gray), and the distribution of total
damages (in 2017 dollars) across monthly precipitation anomalies (dark
gray). (C) Effect of precipitation on flood damages within each NCEI climate
region (shown in A), for two precipitation variables: total monthly precipi-
tation (black) and monthly maximum 5-d precipitation (gray). Effects are
measured as the change in ln(normalized damages) per SD change in pre-
cipitation. Points show median coefficient estimates and vertical lines show
the 95% CI around each point estimate. Filled circles indicate statistically
significant (P < 0.05) differences between the regional coefficients and a
pooled model (shown as a black dashed line for total monthly precipitation,
same as the blue line in B). (D) Seasonal variations in the effect of monthly
precipitation on flood damages for each region. Points show the median
coefficient estimates for each season and region, and vertical lines show the
95% CI around each point estimate. Seasons are defined as December–
January–February (DJF), March–April–May (MAM), June–July–August (JJA),
and September–October–November (SON). Black dotted lines show the
median coefficient estimate for each region (the same as black points in C),
and gray shading shows the 95% CI (black lines in C).
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warmer seasons. We use the regional, monthly regression model
(Fig. 1C) as our primary model for later analyses, but we test the
sensitivity of our results to these seasonal effects (see Fig. 3B).
We use our regression model results as a framework to un-

derstand the effect of historical precipitation changes on flood
damages. Because monthly total and maximum 5-d precipitation
have a similar effect on monthly flood damages (Fig. 1C), and
because previous studies have detected changes in short-duration
(e.g., daily or 5-d) precipitation extremes (5, 28), we analyze
trends in both monthly total (Fig. 2A) and maximum 5-d pre-
cipitation (Fig. 2B). Further, given existing evidence that trends
in extreme precipitation are larger and sometimes of opposite
sign compared with trends in mean precipitation (29), we cal-
culate trends at multiple quantiles within the distributions of
monthly total and maximum 5-d precipitation. This approach
allows us to distinguish between changes in the wettest months
(which are associated with the largest flood damages; Fig. 1B)
and changes in the median or drier months.
Fig. 2 shows trends in the 50th, 75th, and 95th percentiles of

the monthly total and maximum 5-d precipitation distributions
from 1928 to 2017. These analyses confirm that historical pre-
cipitation trends are not uniform across the distribution, with the
95th percentile exhibiting the largest trends. The spatial pattern
of changes in monthly precipitation is very similar to that of
monthly maximum 5-d precipitation. Most of the northwestern,
central, and eastern United States have seen increases in median
(50th percentile) monthly precipitation, whereas the Southwest
has experienced decreases in median monthly precipitation. This
spatial pattern is very similar to reported changes in annual mean
precipitation over the United States, which results from changes
that vary by region and season, including increases in fall pre-
cipitation in the Southeast, Northeast, and Great Plains and
decreases in spring precipitation in the Southwest (29).

Precipitation during the wettest months (i.e., the 95th per-
centile) has increased across most of the country, even in some
areas where median monthly precipitation is decreasing (Fig. 2).
This pattern is also true for monthly maximum 5-d precipitation,
and is consistent with previously identified increases in short-
duration (e.g., daily or 5-d) precipitation extremes (29). The
largest increases in the 95th percentile have occurred in the
Midwest and Northeast.
Based on the regional regression coefficients, expected state-

level flood damages have increased by an average of 35, 50, and
70% for precipitation at the 50th, 75th, and 95th percentiles,
respectively (SI Appendix, Text and Fig. S4). In some states, we
calculate that damages from the wettest 5% of months are now
more than three times what would be expected in the absence of
the observed precipitation changes (SI Appendix, Fig. S4).
Removing the historical quantile-specific monthly precipita-

tion trends in each state allows us to estimate the effect of state-
level precipitation changes on cumulative national-level damages
(Fig. 3A and Methods). We find that precipitation changes have
contributed 36% ($73 billion) of the 1988-to-2017 cumulative US
flood damages. Uncertainty in the regional regression coeffi-
cients (Fig. 1C) and observed precipitation trends (SI Appendix,
Figs. S4 and S5) yields a 95% confidence range of 20 to 46% (39
to $91 billion) contributed by state-level precipitation trends.
Our results are robust to using alternative regression models

that account for lagged and seasonal effects (Fig. 3B), and to
calculating precipitation trends over different time periods
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Fig. 3. Cumulative damages due to historical precipitation change. (A)
Cumulative observed flood damages (gray) and estimated portion due to
historical precipitation change (green) from 1988 to 2017. Error bars show
the 95% CI for cumulative damages in 2017 (based on precipitation trends
from 1928 to 2017). (B) Impact of historical precipitation change on cumu-
lative flood damages in 2017 using various regression model specifications.
From left to right, the models are the regional model (same as A), the
regional-seasonal model (Fig. 1D), a regional model with lagged precipita-
tion (SI Appendix, Fig. S2A), a linear model (Fig. 1B), and a quadratic model
(Fig. 1B). (C) Sensitivity of cumulative damages from precipitation change to
starting year of precipitation trend calculation. All estimates use the same
regional regression model used in A.
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(Fig. 3C). They are also robust to using different assumptions
about possible unreported damages (SI Appendix, Fig. S6); fur-
ther, the fact that the historical flood damage values are likely
underestimated and/or unreported in earlier years (1) would
cause the effect of precipitation on damages to be under-
estimated, and thus make our estimate of the contribution of
historical precipitation change conservative (SI Appendix, Text
and Fig. S1A).
There are limitations to using the state-month as the unit of

analysis, because flooding can occur on shorter or longer time-
scales, and over smaller or larger areas. However, we find that
our primary regression model yields a similar (although slightly
lower) estimate of the contribution of historical precipitation
change compared with versions of the model that include effects
of precipitation over longer timescales (Fig. 3B) or larger spatial
scales (SI Appendix, Fig. S3). The strong similarity between his-
torical trends in monthly total and monthly maximum 5-d pre-
cipitation (Fig. 2), as well as similarity in their effect on damages
(Fig. 1C), indicate that an analysis based on 5-d precipitation
would yield a similar estimated contribution of historical pre-
cipitation change. Together, these sensitivity analyses suggest
that our primary estimate of the contribution of historical pre-
cipitation trends to total US flood damages is both robust and
conservative.
Prior studies have attributed increases in short-duration pre-

cipitation extremes over the United States to anthropogenic
climate forcing by comparing historical trends with climate
model simulations (10, 30), isolating forced changes from those
driven by modes of natural climate variability (31–34), or cal-
culating the probability of extreme events (i.e., “risk ratio”) with
and without anthropogenic climate forcing (9, 35, 36). While the
general circulation models that comprise the Coupled Model
Intercomparison Project (CMIP5) ensemble show a thermody-
namic response to warming (37, 38) (Figs. 4 and 5), they do not
explicitly resolve the precipitation processes that cause flood
damages (such as severe thunderstorms and tropical cyclones),
and may underestimate the magnitude of extreme precipitation
change (10, 28, 29, 31). Given the large uncertainties in modeled
precipitation trends, particularly at the spatial scale of individual
events, we do not use our regression analysis to explicitly sepa-
rate the contributions of forced climate change and unforced
climate variability to cumulative flood damages.
However, we do use the CMIP5 global climate model simu-

lations to assess changes in the probability of monthly total and
maximum 5-d precipitation thresholds over the recent historical
period (1988 to 2017) compared with an early-industrial baseline
(1860 to 1920; SI Appendix, Text). The probability of exceeding
the baseline 50th and 75th percentiles of monthly precipitation
has increased slightly across the central and eastern United
States in the recent historical period, and decreased slightly
across the Southwest (Fig. 4). In contrast, the probability of ex-
ceeding the baseline 95th or 99th percentiles has increased
across most of the United States, especially for monthly maxi-
mum 5-d precipitation (Fig. 4). This analysis suggests that an-
thropogenic climate forcing has increased the frequency of
extreme monthly precipitation, with the ensemble mean re-
sponse (Fig. 4) showing many similarities to the observations
(Fig. 2). However, despite the mean wetting in response to an-
thropogenic forcing, there is some disagreement across models
on the direction of change over the recent historical period,
particularly at the higher-percentile thresholds (Fig. 4). We must
therefore conclude that the estimated flood damages due to
precipitation change (Fig. 3) represent the combined effects of
anthropogenic forcing and natural variability, and cannot be
entirely attributed to anthropogenic climate change.
To understand the implications of additional global warming

for the cost of future flood damages, we evaluate future pre-
cipitation change in the “high-” (RCP8.5) and “low-” (RCP2.6)

emissions scenarios analyzed in the assessment of impacts, ad-
aptation, and vulnerability in the Intergovernmental Panel on
Climate Change (IPCC) Fifth Assessment Report [IPCC AR5
(16)]. In both scenarios, the 95th and 99th percentiles of monthly
total and maximum 5-d precipitation are projected to increase
across most of the United States by midcentury (2046 to 2065)
relative to the recent historical period (SI Appendix, Fig. S7).
Under the high-emissions scenario (RCP8.5), there is strong
model agreement that the wettest months (both in total precip-
itation and maximum 5-d precipitation) will continue to intensify
through the end of the century (Fig. 5). In some parts of the
northeastern and western United States, the 99th percentile of
monthly maximum 5-d precipitation is projected to increase by
more than 1 SD (Fig. 5B). Combined with our regression model,
these analyses suggest that—absent changes in exposure or
vulnerability—future global warming is very likely to increase the
costs of flooding, but that those increases could be greatly re-
duced under a low-emissions scenario consistent with the UN
Paris Agreement.
Overall, our findings are consistent with prior conclusions that

flood damages are sensitive to variations in weather (39–41), and
that climate change has likely increased historical damages from
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B

Change in probability of exceeding
1860−1920 precipitation thresholds during 1988−2017

Fig. 4. Change in probability of exceeding early industrial baseline pre-
cipitation thresholds during the recent historical period, simulated by the
CMIP5 global climate model ensemble. (A) Probability of exceeding the early
industrial baseline (1860 to 1920) 50th, 75th, 95th, and 99th percentile
monthly precipitation thresholds during the recent historical period (1988 to
2017). Probabilities are shown as a ratio relative to the probability during
the baseline period, and are based on a 24-model ensemble (SI Appendix).
Solid colors indicate strong model agreement (following the IPCC AR5 def-
inition, when ≥66% of models agree with the direction of change shown on
the map). Black stippling indicates <66% of models agree with the direction
of change shown. (B) Same as A but for monthly maximum 5-d precipitation.
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flooding and/or tropical cyclones (42, 43). While some studies
have not found an impact of climate change on historical flood
damages (20, 21), this contrast may be explained by different
methodology, including 1) the scale of the analysis (for example,
country-year in previous studies vs. state-month in our study); 2)
our use of fixed effects to isolate precipitation variation from the
many other time-invariant and time-varying factors that might
also affect flood damages (such as variations in exposure and
vulnerability); and 3) our use of precipitation trends at different
percentiles of the distribution to isolate trends affecting the
wettest months (in which damages are most likely to occur).

Conclusions
Our results show that historical increases in precipitation are
very likely responsible for a substantial fraction of recent in-
creases in US flood damages. Not only does precipitation in the
upper tail of the distribution cause the largest historical damages
(Fig. 1B) but the most intense precipitation has also shown the
greatest increase over the historical period (Fig. 2), along with
the strongest imprint of anthropogenic climate forcing (Fig. 4).
Our panel regression models, combined with our analyses of
quantile-specific precipitation trends, provide an empirical
framework for quantifying the contribution of historical precip-
itation changes to recent increases in flood damages, and more
broadly the costs associated with global warming.
This framework provides empirical evidence that climate

change has affected the cost of flood damages at the national
scale, along with comprehensive quantification of the magnitude
and uncertainty of that impact. The framework could be ex-
tended to calculate the costs due to changes in other natural
hazards, or to calculate the global costs of regional precipitation
change. Given the importance of evaluating the costs of climate
change versus the costs of mitigation options (44), the empirical
quantification of losses due to changing natural hazards provides
critical information to inform policy and decision making.

Methods
Precipitation and Flood Damage Data. We calculate historical monthly pre-
cipitation in each state using 4-km gridded monthly precipitation observa-
tions from the PRISM (parameter-elevation regressions on independent
slopes model) Climate Group (45, 46) and state boundaries from the US
Census Bureau. Monthly precipitation for each state is calculated as the
average of all grid cells within each state boundary. We standardize the
precipitation time series in each state by subtracting the mean monthly
precipitation and dividing the anomaly by the SD of monthly precipitation,
with the mean and SD for each state calculated over the IPCC’s 1986-to-2005
baseline period (16). To test the regression model with shorter-duration
precipitation, we also calculate monthly maximum 5-d precipitation in
each state using the PRISM daily precipitation data. The maximum 5-d pre-
cipitation in each month is defined as the maximum total precipitation over
5 consecutive days within each calendar month. We standardize the monthly
maximum 5-d precipitation time series in each state using the same
procedure described above.

We analyze monthly, state-level flood damage estimates over 1988 to
2017 from the Spatial Hazard Events and Losses Database for the United
States (SHELDUS) version 17.0 (47). SHELDUS compiles flood damage esti-
mates from the National Climatic Data Center Storm Data publications.
Details of the SHELDUS dataset, including a comparison with other flood
damage datasets and discussion of how uncertainty in reported damages
could impact our results, are included in SI Appendix.

Regression Model. To estimate the relationship between monthly precipita-
tion and flood damages (Fig. 1B), we use a least-squares log-linear regression
model:

ln yilm( ) =   βPilm +   δil   +   μim +   «ilm, [1]

where yilm is normalized flood damages in state i during month m of year l,
Pilm is the standardized precipitation anomaly during the same state-month,
δil and μim are state-year fixed effects and state-calendar month fixed effects,
respectively, and «ilm is an error term. We normalize flood damages by an-
nual state income, which is strongly correlated with exposure (see details in
SI Appendix). The fixed effects in Eq. 1 subtract out year-to-year and sea-
sonal variations in average damages in each state, allowing us to estimate
the effect of monthly precipitation on flood damages after controlling for
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Projected change in monthly precipitation by 2081−2100
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RCP8.5D
Projected change in monthly max 5−day precipitation by 2081−2100

Fig. 5. Projected changes in monthly total and maximum 5-d precipitation. (A) Projected change in the 50th, 95th, and 99th percentiles of monthly pre-
cipitation by 2081 to 2100 for RCP2.6. Changes are relative to the recent historical (1988 to 2017) period. Maps show the mean change across a 17-model
ensemble (Methods). Solid colors indicate strong model agreement (following the IPCC AR5 definition, when ≥66% of models agree with the direction of
change shown on the map). Black stippling indicates <66% of models agree with the direction of change shown. (B) Same as A but for RCP8.5. (C) Same as A
but for monthly maximum 5-d precipitation. (D) Same as B but for monthly maximum 5-d precipitation.
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long-term changes in flood damage in each state. In other words, we can
directly compare flood damages during a relatively wet month in a given
state (e.g., June 2008 in Iowa) with flood damages during a relatively
dry month in the same calendar month and state (e.g., June 2012 in Iowa),
after accounting for average differences in flood damages and precipitation
between the two different years (e.g., 2008 and 2012) that could have arisen
from simultaneous changes in exposure or vulnerability. We calculate CIs
around the estimated coefficients using bootstrap resampling (SI Appendix).

We test a number of variations of Eq. 1 by including additional interaction
terms and testing nonlinear functional forms. The remaining regression
models (including those shown in Figs. 1 C and D and 3B) are described in SI
Appendix, Text.

Impact of Historical Precipitation Trends on Flood Damages. Following the
approach of Diffenbaugh and Burke (48), we estimate the impact of his-
torical precipitation trends on cumulative flood damages by calculating the
“counterfactual” flood damages that would have occurred in the absence of
precipitation changes. To create the counterfactual monthly precipitation
time series, we remove observed trends at each decile of the distribution,
which allows us to account for nonuniform changes in the distribution of
monthly precipitation (SI Appendix). We next estimate counterfactual flood
damages associated with this counterfactual precipitation time series. For
each month with flood damages, we calculate the difference between the
observed and detrended precipitation. While there are limitations to using
counterfactual “treatments” and fixed-effects regression models to extrap-
olate impacts of large within-unit changes (49), in this case the changes in
precipitation due to the historical trends are much smaller than the historical
precipitation variability within each state (SI Appendix, Fig. S9). Because
many of the observed trends are positive (Fig. 2), the detrended precipita-
tion anomalies in the counterfactual scenario are less extreme than the
observed precipitation anomalies, and this analysis does not require ex-
trapolating the regression model beyond the observed data.

Based on the difference between the observed and detrended precipi-
tation anomalies, we estimate counterfactual damages using the regional
regression coefficients (SI Appendix, Eq. S4). We calculate the cumulative
damages due to precipitation change as the sum of all observed damages
minus the sum of the counterfactual damages. We calculate a 95% confi-
dence range for our estimate of cumulative counterfactual damages based
on 1) uncertainty in the regional regression coefficients and 2) uncertainty in
the observed precipitation trends (SI Appendix, Text). We also evaluate the
sensitivity of the counterfactual damage analysis to using other regression
models, or using precipitation trends over shorter or longer time periods (SI
Appendix, Text). The various alternatives lead to slightly higher or lower
estimates of counterfactual damage, with our main result falling in the
middle of the distribution (Fig. 3 B and C and SI Appendix, Fig. S6).

Climate Model Analysis. We analyze historical and future climate model
simulations from CMIP5 (50) to understand the impacts of anthropogenic
climate forcing on extreme monthly and 5-d precipitation. To assess the

influence of anthropogenic climate forcing on historical changes, we cal-
culate risk ratios (i.e., changes in the probability of exceeding various
monthly total or maximum 5-d precipitation thresholds) for 24 simulations
over the recent historical period (1988 to 2017) compared with an early-
industrial baseline (1860 to 1920). To understand the impact of additional
global warming on the future costs of flooding, we analyze changes in
monthly total and maximum 5-d precipitation by 2046 to 2065 and by 2081
to 2100 in 34 simulations and two future emissions scenarios (17 simulations
with the RCP2.6 forcing and 17 simulations with the RCP8.5 forcing). A de-
tailed description of the CMIP5 simulations and analyses, including the
limiting factors on the number of simulations analyzed, is provided in SI
Appendix, Text.

Data Availability. The PRISM monthly and daily precipitation products are
available from the PRISM Climate Group (http://www.prism.oregonstate.
edu/). The SHELDUS dataset is a subscription-based dataset available from
the Center for Emergency Management and Homeland Security at Arizona
State University (https://cemhs.asu.edu/sheldus). State boundary files are
available from the US Census Bureau (https://www.census.gov/geographies/
mapping-files/time-series/geo/tiger-line-file.html). Watershed boundary files
can be downloaded from the Watershed Boundary Dataset (https://www.
usgs.gov/core-science-systems/ngp/national-hydrography/watershed-boundary-
dataset). Data on annual state income and national net stock of repro-
ducible fixed assets are available from the US Bureau of Economic Analysis
(https://www.bea.gov/). Data on state-level housing values and number of
housing units are available from the US Census Housing Tables (https://www.
census.gov/topics/housing/data/tables.html) and the American Community
Survey (https://www.census.gov/programs-surveys/acs). The Climdex HadEX3
gridded monthly Rx5day product is available from the Climdex project ar-
chive (https://www.climdex.org/access/), and the Climdex CMIP5 data are
available through Environment Canada (https://crd-data-donnees-rdc.ec.gc.
ca/CCCMA/products/CLIMDEX/). CMIP5 data are available from the Program
for Climate Model Diagnosis & Intercomparison through the Earth System
Grid Federation data portal (https://esgf-node.llnl.gov/projects/cmip5/). Code
and data supporting the findings of the study are available in GitHub at
https://github.com/fdavenport/DBD2021.
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