
1.  Introduction
Severe precipitation and flooding are widespread hazards impacting >70 million people globally each year 
(CRED, 2018). Climate change has increased the frequency and intensity of extreme precipitation (Diffen-
baugh et al., 2017; Min et al., 2011; Papalexiou & Montanari, 2019), which increases the costs associated 
with these hazards (Davenport et al., 2021). To adapt to future precipitation and flooding extremes, it is 
critical to understand how these hazards are changing.

Increasing precipitation intensity due to higher atmospheric moisture is an expected response to global 
warming (Allen & Ingram,  2002; Trenberth,  1999). Climate change could also cause dynamic changes 
such as altering the location and speed of storm tracks (O'Gorman, 2010; Shaw et al., 2016; Yin, 2005), or 
changing the occurrence of the atmospheric environments associated with precipitation extremes (Bar-
low et al., 2019; Diffenbaugh et al., 2013; Prein & Mearns, 2021; Trapp et al., 2007). However, due to the 
challenges of simulating precipitation processes in general circulation models (GCMs; Kharin et al., 2013; 
Prein & Pendergrass, 2019), understanding of how global warming affects regional and local precipitation 
extremes remains incomplete.

One approach is to analyze the large-scale atmospheric conditions during which extremes occur. Such stud-
ies have commonly used unsupervised methods, such as k-means clustering and self-organizing maps (Agel 
et al., 2018; Cassano et al., 2007; Esteban et al., 2005; Fragoso & Tildes Gomes, 2008; Gibson et al., 2017; 
Horton et al., 2015; Loikith et al., 2017; Merino et al., 2016; Singh et al., 2014, 2016; Wilson et al., 1992; 
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Plain Language Summary  Extreme precipitation and flooding cause widespread impacts 
on human society. While global warming has increased the occurrence of these damaging events, there 
is still uncertainty about how climate change will affect precipitation and flooding, making it difficult to 
adequately prepare for future hazards. We use machine learning to understand why extreme precipitation 
is becoming more common in the U.S. Midwest by analyzing the atmospheric circulation patterns 
during extreme precipitation events. Our results show that there is heavier precipitation when extreme 
precipitation patterns occur, but the patterns themselves have not changed significantly in frequency over 
the past four decades. Our method could be used to better understand changes in extreme events in the 
Midwest and in other regions of the world.
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Zhang & Villarini, 2019). In addition to generating insight into mechanisms by which dynamic and ther-
modynamic changes may affect extreme events, this approach provides an opportunity to link observed 
extremes with changes in the large-scale circulation simulated by GCMs (Barlow et al., 2019; Diffenbaugh 
et al., 2017; Grotjahn et al., 2016).

Here, we demonstrate the use of a convolutional neural network (CNN) to identify large-scale atmospheric 
circulation patterns associated with extreme precipitation. Because days with extreme precipitation repre-
sent a small subset of overall days, the circulation patterns associated with those events may be missed by 
unsupervised methods that learn the most common patterns in the data. Therefore, we use a supervised 
approach in order to focus specifically on circulation patterns related to extreme precipitation.

CNNs are neural networks designed for analyzing gridded data, such as images or spatial data (Goodfel-
low et al., 2016). CNNs are named for their convolutional layers, which use sliding filters (or “kernels”) to 
learn spatial features in the input image. Deep neural networks, including CNNs, often achieve superior 
performance compared to traditional machine learning or statistical models due to their ability to learn 
complex, non-linear patterns (LeCun et al., 2015). Their use has grown rapidly, including in climate science 
and meteorology (Barnes et al., 2020; Chattopadhyay et al., 2020; Ham et al., 2019; Lagerquist et al., 2019). 
Additionally, recent examples of deep learning visualization within the geosciences have shown that neural 
networks can provide insight into physical processes (Ebert-Uphoff & Hilburn, 2020; Gagne et al., 2019; 
McGovern et al., 2019; Toms et al., 2020).

We focus our analysis on the U.S. Midwest. Floods affecting the Midwest account for more than half of 
damages from U.S. Billion Dollar Flood disasters (Figure 1b; NOAA, 2021). While multiple physical and 
socio-economic factors influence flood damage, U.S. damages are highly sensitive to extreme precipita-
tion (Davenport et  al.,  2021), and extreme precipitation days have become more frequent in the region 
(Figures 1c–1e). To understand these increases, we train a CNN to learn large-scale “extreme precipitation 
circulation patterns” (EPCPs). We interpret the EPCPs using layerwise relevance propagation (LRP), a deep 
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Figure 1.  (a) Mean daily precipitation within the study region (green box). (b) Annual damages from U.S. Billion Dollar Disaster floods. Damages from floods 
affecting the Midwest are shown in blue. (c) Linear trend in the number of Midwest extreme precipitation days per year for the overall (black), early (gray), and 
late (green) periods. Points show individual years. (d) Linear trend in number of extreme precipitation days per year at Global Historical Climatology Network 
(GHCN) stations. (e) Same as (d), for the late period (2000–2019).
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learning visualization tool. We use the trained CNN to identify EPCP and non-EPCP days, and investigate 
the hypotheses that changes in precipitation are due to (a) changes in the frequency of EPCPs and (b) 
changes in water vapor transport and precipitation intensity when EPCPs occur.

2.  Data and Methods
2.1.  Data

We use PRISM 4 km daily precipitation (PRISM Climate Group) to calculate extreme precipitation days over 
the U.S. Midwest from 1981 to 2019. For each day, we calculate the average precipitation over a rectangular 
region covering the Upper Mississippi Watershed and the eastern portion of the Missouri Watershed (37°N 
to 48°N, 104°W to 86°W; green box in Figure 1a). We use this regional daily precipitation timeseries to 
calculate the 95th percentile (p95) of daily precipitation, and define extreme precipitation days as those ex-
ceeding the p95 threshold (e.g., Zhang & Villarini (2019); Sillmann et al. (2013)). Because Midwest extreme 
precipitation can occur throughout the year (Figure S1), we analyze EPCPs across all seasons.

In addition to the PRISM gridded precipitation, we also evaluate the performance of the CNN and ana-
lyze long-term changes in precipitation using station data from the Global Historical Climatology Network 
(GHCN). We include all stations in the Midwest with data available for the full period of analysis (1981–
2019), excluding any stations with >10% missing data (leaving a total of 923 stations). At individual stations, 
we define extreme precipitation days as those exceeding the 95th percentile of daily precipitation for that 
station. We also define regional extreme days as those where ≥20% of stations exceeded the 95th percentile 
(this occurs on approximately 5% of days).

We use daily mean sea level pressure (SLP) and 500-hPa geopotential height (GPH) anomalies calculated 
from the NCEP/NCAR-R1 reanalysis (Kalnay et al., 1996), which provides global coverage at 2.5° x 2.5° 
horizontal resolution. For the atmospheric variables, we analyze a larger spatial domain that covers the 
continental U.S. and surrounding oceans (20°N to 55°N and 140°W to 55°W; Figure 2). To remove uni-
form thermal dilation caused by recent tropospheric warming (Horton et al., 2015), we first subtract the 
area-weighted average 500-hPa GPH trend over the atmospheric domain, preserving spatially non-uniform 
changes in 500-hPa GPH that could impact extreme precipitation (Cattiaux et al., 2013; Swain et al., 2016). 
We then calculate daily standardized anomalies (z-scores) by subtracting the grid-cell calendar-day mean 
and dividing by the grid-cell calendar-day standard deviation.

We use zonal wind (u), meridional wind (v), and specific humidity (q) fields from the NCEP/NCAR-R1 
reanalysis to evaluate differences in moisture flux on days with EPCP and non-EPCP patterns.

2.2.  Identification of Extreme Precipitation Circulation Patterns (EPCPs) Using a Convolutional 
Neural Network

2.2.1.  Neural Network Model

To identify Midwest EPCPs, we train a CNN to predict extreme precipitation days using daily SLP and 
500-hPa GPH anomalies (Figure 2a). (We also test a model using only 500-hPa GPH, but the model with 
both input variables has higher classification performance; Figure S2). The CNN is a sequential classifier, 
meaning input data for each day are passed through multiple layers to generate an output classification of 
EPCP (Class 1) or non-EPCP (Class 0). For each day, the input to the CNN is a three-dimensional matrix 
with dimensions 15 × 35 × 2 (i.e., latitude × longitude × 2 input variables). The output labels for the CNN 
training are generated from the precipitation data. Extreme precipitation days are assigned to Class 1, and 
non-extreme precipitation days are assigned to Class 0. (We also train the model using a moving p95 thresh-
old to assign extreme and non-extreme days, which produces similar results; Figure S3).

More details on the model architecture, training, hyperparameter selection, and validation results are pro-
vided in the supporting information.

After training, the model weights are frozen. The trained model is then used to classify each day as EPCP 
(Class 1) or non-EPCP (Class 0) based on the 500-hPa GPH and SLP anomaly patterns (without considering 
precipitation). In other words, EPCP days include all days with a model-predicted EPCP probability >0.5, 
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Figure 2.
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even if precipitation on that day did not exceed the p95 threshold. (Conversely, non-EPCP days include all 
days with a predicted EPCP probability <0.5). The results shown are calculated across all days in the period, 
except when noted as training or validation results.

2.2.2.  Neural Network Interpretation

We use LRP to interpret the network's classification of individual days. Starting from the final classification 
layer and working back toward the input layer, LRP traces the most important, or “relevant,” information 
that was passed between layers. Following previous applications in the geosciences (Hilburn et al., 2021; 
Toms et al., 2020) and recommendations from Montavon et al. (2018), we use the alpha-beta rule with α = 1 
and β = 0 to track information passed between layers. With this formulation, LRP tracks information that 
positively contributes to the predicted class. This rule is known to produce relevance heatmaps which are 
usually straightforward to interpret. We also tested the alpha-beta rule with α = 2 and β = 1, which tracks 
both positive and negative information, but the resulting heatmaps were noisy and less interpretable, which 
is a known challenge of some LRP rules (Montavon et al., 2018).

For a given day, LRP produces a heatmap with the same dimensions as the input, where each pixel's value 
corresponds to the importance of that input pixel for the final classification. Thus, a primary advantage of 
LRP is the ability to visualize features important for the prediction in the original spatial domain.

We implement LRP using the iNNvestigate package in Python (Alber et al., 2019).

2.3.  Evaluating Changes in Extreme Precipitation Days

After each day is classified, we first count the number of EPCP days and average precipitation intensity 
across EPCP days for each calendar year. We then calculate linear trends in EPCP frequency and precipita-
tion intensity across the annual timeseries for the early (1981–1999), late (2000–2019), and full (1981–2019) 
periods. (The sensitivity to the cut-off year between the early and late periods is shown in Table S1). We 
also compare the distribution of daily precipitation for EPCP and non-EPCP days during the early and late 
periods (Figures 3f–3i).

We calculate the vertically integrated daily moisture flux (MFx and MFy) in the zonal and meridional direc-
tions using the equations:

  
300 hPa

1,000 hPa

1
xMF qudp

g
� (1)

  
300 hPa

1,000 hPa

1
yMF qvdp

g
� (2)

For each grid cell, the total moisture flux is calculated as:

 2 2Total moisture flux x yMF MF� (3)

We calculate composite maps of total moisture flux on EPCP and non-EPCP days. We calculate changes in 
moisture flux for each class as the difference in average moisture flux for the late period (2000–2019) com-
pared to the early period (1981–1999), with the statistical significance of the difference calculated at each 
grid cell using the Mann-Whitney U-test.
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Figure 2.  (a) Schematic diagram of neural network architecture, input data, and output prediction. (b) Composite anomaly maps for extreme precipitation 
circulation patterns (EPCPs). (c) Probability of EPCP predicted by convolutional neural network (CNN) versus daily precipitation. Heatmap covers areas with 
>10 days/bin (points show individual days). Red shapes correspond to the three days in (i)–(t). Orange shapes correspond to examples in Figure S5. Vertical 
dashed line shows 95th percentile of daily precipitation. (d) Fraction of days classified as EPCPs for different precipitation amounts. (e)–(h) composite relevance 
maps for each class (EPCP and non-EPCP), calculated using layerwise relevance propagation (LRP; see Methods). (i) 500-hPa geopotential height (GPH) 
anomaly map for the >p95 day from the validation set with the highest EPCP probability (1986-09-11). (j) Relevance of each pixel in (i) for the final prediction. 
(k) SLP anomaly map on 1986-09-11. (l) Relevance of each pixel in (k) for the final prediction. (m–t) same as (i–l) for two more days from the validation set: 
>p95 day with lowest EPCP probability (m–p) and <p95 day with lowest EPCP probability (q–t).
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3.  Results
3.1.  Network Performance and Interpretation

The CNN correctly classifies 91% of Midwest extreme precipitation days as EPCPs, with an overall accu-
racy of 88% across both classes. (The CNN shows similar performance when evaluated using precipitation 
station data; Figure S4). Composite anomaly maps across EPCPs show a 500-hPa trough over the western 
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Figure 3.  (a) Linear trend in annual extreme precipitation circulation pattern (EPCP) occurrences for the overall (black), early (gray), and late (blue) periods. 
Points show individual years. (b) Same as (a) for mean EPCP precipitation intensity. (c) Linear trend in EPCP mean precipitation (1981–2019) at Global 
Historical Climatology Network (GHCN) stations. (d) Same as (c), for the late period (2000–2019). (e) Same as (c) for non-EPCP days. (f) Distribution of EPCP 
daily precipitation for the early and late periods. (g) Change in relative frequency for each bin shown in (e). (h–i) Same as (f–g) for non-EPCP days (note 
different x-axis scale).
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U.S., high pressure at 500-hPa along the U.S. East Coast, and an SLP low over the Midwest and extending 
south (Figure 2b). Of all days classified as EPCP patterns, 28% resulted in extreme precipitation. In contrast, 
only 0.5% of days classified as non-EPCP patterns resulted in extreme precipitation. The CNN shows pre-
dictive skill across all seasons, although there are fewer low-precipitation EPCP days in summer compared 
to other seasons (Figure S5). The CNN also correctly predicts extreme precipitation days at individual sta-
tions, although the predictive performance decreases for stations near the edge of the precipitation domain 
(Figure S4).

Although the network was trained using a fixed extreme precipitation threshold, the network shows skill 
in identifying days that are slightly below this threshold (Figures 2c, 2d and S6). On average, EPCP days 
that did not have > p95 precipitation still have higher precipitation than non-EPCP days (Figure 2c). Addi-
tionally, 100% of days that exceed higher precipitation thresholds (e.g., >12 mm) are correctly identified as 
EPCPs (Figure 2d).

We show composite LRP maps for each class (Figures  2e–2h), along with LRP results for selected days 
from the validation set (Figures 2i–2t and S3). The composite LRP maps on EPCP days show the highest 
relevance for pixels over the Midwest, indicating that the CNN focuses on circulation features in that area, 
despite having no information about the geographic location of the binary extreme precipitation timeseries. 
In contrast, there is no particular region that stands out as having the highest relevance on non-EPCP days, 
nor any clear spatial coherence to the composite LRP pattern (Figures 2g and 2h).

Examining LRP maps for individual days shows that the CNN identifies strong anomalous features in the 
input variables. For example, on the extreme precipitation day with highest EPCP probability (Figures 2i–
2l), we find that the CNN identifies an anomalous 500-hPa trough over the Midwest (Figure 2j) and a neg-
ative SLP anomaly slightly eastward of the elevated trough (Figure 2l). In contrast, on the non-extreme day 
with the lowest EPCP probability (1981-09-19), the CNN identifies a negative 500-hPa GPH anomaly over 
the East Coast (Figures 2q–2t). On the extreme precipitation day with the lowest EPCP probably (2007-10-
03; Figures 2m–2p), the areas of the highest relevance for the non-EPCP prediction include positive 500-hPa 
GPH anomalies over much of the U.S. Taken together, the relevance maps indicate that the network iden-
tifies a variety of features in the input data, but is particularly sensitive to the presence – and location – of 
strong, negative 500-hPa GPH or SLP anomalies.

3.2.  Changes in Pattern Frequency, Precipitation, and Moisture Flux

To identify underlying causes of increasing Midwest extreme precipitation days (Figure 1), we calculate 
trends in the frequency of EPCPs, and trends in precipitation intensity on days when EPCPs occur. Over 
the recent period (2000–2019), the frequency of EPCPs increased at a rate of 1.03 days year−1 (p < 0.01; 
Figure 3a). However, this increase followed a period of equivocal – or even slightly decreasing – trend in 
EPCP frequency, and there is no significant trend in frequency for the 1981–2019 period overall (Figures 3a 
and S3). (We find similar results using different breakpoints between the early and late period; Table S1). 
Given that the wettest days are associated with high predicted EPCP probabilities (Figure 2c), we also assess 
changes in the frequency of days with EPCP probabilities >0.75 or >0.9. There is some evidence of an in-
creasing frequency of days with EPCP probability >0.75, but no significant change in the frequency of days 
with EPCP probability >0.9 (Figures S7 and S8).

In contrast, precipitation intensity has increased significantly when EPCPs occur (Figure  3b), with 
mean precipitation on EPCP days increasing at a rate of 0.02 mm day−1 year−1 for the overall period 
(p = 0.011), and 0.04 mm day−1 year−1 over the last 20 years (p = 0.071). (Using a different breakpoint 
for the early and late periods yield similar trend estimates; Table S1). We also find similar increases in 
precipitation on days with EPCP probability >0.75 or >0.9 (Figures S7 and S8). Further, many individ-
ual stations have experienced increases in EPCP precipitation of a similar magnitude as the regional 
trend (Figures 3c and 3d), indicating that this result is robust across spatial scales and precipitation 
datasets.

The proportion of EPCPs that resulted in extreme precipitation also increased in the late period compared 
to the early period, while the proportion of EPCPs with low precipitation decreased (Figures 3f and 3g). 
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In contrast, changes in the distribution of daily precipitation were small for non-EPCP days (Figures 3h 
and 3i), providing further evidence that the observed regional increase in the frequency of extreme precipi-
tation was primarily a result of increases in precipitation intensity during EPCPs.

The increases in precipitation intensity during EPCPs have co-occurred with preferential increases in mois-
ture flux into the Midwest region. On average, EPCP days have high moisture flux from the Gulf of Mexico 
into the region (Figure 4a). In addition, there were statistically significant (p < 0.05) increases in moisture 
flux into the Midwest region on EPCP days in the late period compared to the early period (Figure 4b). In 
contrast, non-EPCP days show lower – and more zonal – moisture flux over the Midwest (Figure 4c), and 
smaller changes in moisture flux have occurred for non-EPCPs, especially over the Midwest (Figure 4d). 
Outside of the Midwest region, changes have been more similar across the two classes, including slight 
decreases in moisture flux over the Southwest. Together, these results show that there have been distinct 
changes in moisture flux into the Midwest on EPCP versus non-EPCP days, with the largest increases in 
moisture flux occurring during EPCPs.

4.  Discussion and Conclusions
We use a CNN to identify days with EPCPs, and assess causes of observed increases in extreme Midwest 
precipitation. While there is some indication that EPCP frequency may have increased over the past two 
decades (Table S1), there have been no significant changes in EPCP frequency over the full 1981–2019 pe-
riod (Figure 3). However, precipitation intensity has increased significantly when EPCPs occur, increasing 
the proportion of EPCP days exceeding the p95 threshold (Figure 3). The increase in EPCP precipitation in-
tensity has co-occurred with preferential increases in moisture flux to the Midwest during EPCPs (Figure 4). 
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Figure 4.  (a) Mean moisture flux on extreme precipitation circulation pattern (EPCP) days (precipitation region shown 
in green box). (b) Change in absolute moisture flux on EPCP days between the late and early periods. Red arrows show 
the magnitude and direction of mean moisture flux during the late period. Stippling indicates areas without statistically 
significant changes in moisture flux (p > 0.05), using a two-tailed Mann-Whitney U-test. (c–d) Same as (a–b) for non-
EPCP days.
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These results suggest an earlier emergence of thermodynamically driven changes in extreme precipitation 
compared to dynamically driven changes.

The CNN shows high accuracy in distinguishing EPCPs and non-EPCPs. On average, the CNN identifies 
EPCPs based on negative 500-hPa GPH anomalies in the western portion of the Midwest domain combined 
with negative SLP anomalies over the eastern part of the Midwest domain (Figure 2). This SLP anomaly 
pattern is physically consistent with the pattern of high moisture flux into the Midwest region from the 
Gulf of Mexico, as reflected in Figure 4. Thus, despite not having prior information about the geographic 
provenance of the extreme precipitation timeseries, the CNN uncovers physically meaningful features in 
this region.

However, some extremes are missed by the algorithm, such as October 3, 2007 (Figures 2m–2p). This day 
occurred during a period of unusual weather, with record heat and dry conditions for much of the region, 
and heavy precipitation concentrated in northern areas (Midwest Regional Climate Center, 2007). This ex-
ample highlights that extreme precipitation is often controlled by localized processes not reflected in the 
large-scale SLP and GPH fields or the regional-mean daily precipitation. Additional input variables that 
reflect smaller-scale meteorological processes (e.g., vertical velocity, wind shear, and convective available 
potential energy; Flora et al., 2021) could improve the CNN accuracy for forecasting-related applications. 
The CNN output could also be redefined to focus on a smaller region or to capture days with sub-regional 
heterogeneity.

Although the CNN shows predictive accuracy across all seasons (Figure S5), there are seasonal differenc-
es in the distribution of precipitation during EPCPs, likely reflecting seasonality in the dominant causes 
of precipitation. Extreme precipitation in the Midwest results from distinct causes, including fronts, 
mesoscale convective systems, and tropical and extra-tropical cyclones (Kunkel et al., 2012). While the 
CNN used here groups all EPCPs into one category, extending our LRP analysis of “features” learned 
by the CNN may reveal distinct types of EPCPs, and would complement recent approaches to identi-
fy specific extreme weather “objects” (e.g., fronts or tropical cyclones) using deep learning (Biard & 
Kunkel, 2019; Prabhat et al.,  2021; Racah et al.,  2017). Additionally, incorporating temporal informa-
tion, such as through a three-dimensional CNN, could provide insight into different causes of extreme 
precipitation.

Finally, because the CNN is trained on variables that are available globally, it could be readily retrained to 
analyze EPCPs in other regions. This approach could be useful in regions where limitations of climate mod-
els in simulating precipitation processes lead to high uncertainty in future changes in extreme precipitation. 
Because the CNN uses relatively coarse input data (2.5° horizontal resolution), the CNN could be used to 
evaluate GCM-simulated changes in EPCPs, allowing for analysis of longer historical trends, and separation 
of forced climate change from internal variability. Combined with deep learning visualization tools, the 
CNN could also provide a method to evaluate GCM biases in simulating EPCPs. This method of evaluation 
would represent a new pathway to reduce uncertainty in future projections of extreme precipitation phe-
nomena that are closely linked with large-scale circulation patterns.

Although our initial case study is confined to a single type of event in a single region, the results demon-
strate that machine learning can provide critical insight into the physical processes underlying changes 
in climate extremes. Because it is generalizable to a range of extreme events and regions, it represents a 
promising tool for both scientific understanding and the planning and adaptation required to reduce vul-
nerability to current and future climate change.

Data Availability Statement
PRISM daily precipitation is available from the PRISM Climate Group (http://www.prism.oregonstate.edu). 
The GHCN data is available from the National Oceanic and Atmospheric Administration (NOAA; https://
www.ncdc.noaa.gov/ghcnd-data-access). The NCEP/NCAR-R1 reanalysis is also available from NOAA 
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html). Code supporting the analysis is provided in 
a Zenodo archive (https://doi.org/10.5281/zenodo.5104473).
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